

Mapping Biogeographical Regions with Latent Variable Models

Christopher Krapu

GeoAI Group

Geospatial Sciences & Human Security Division

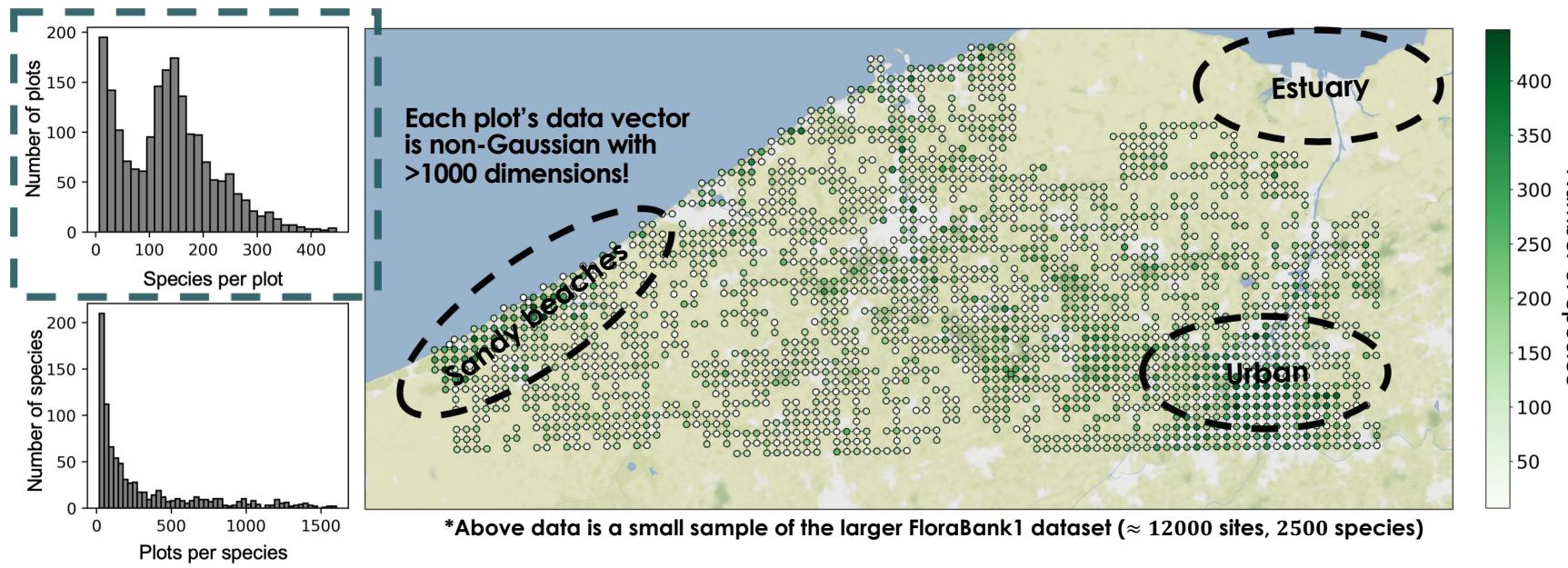
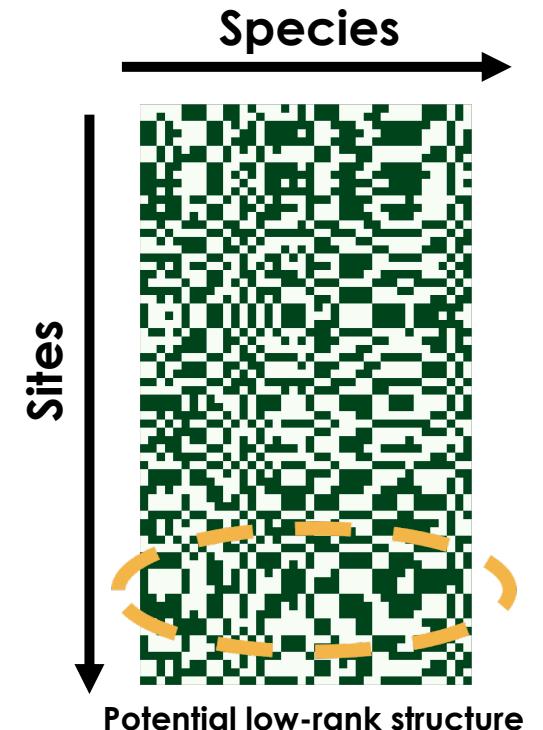
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Rich Biodiversity Data

Species abundance or presence/absence data has grown dramatically richer with new datasets in recent decades!

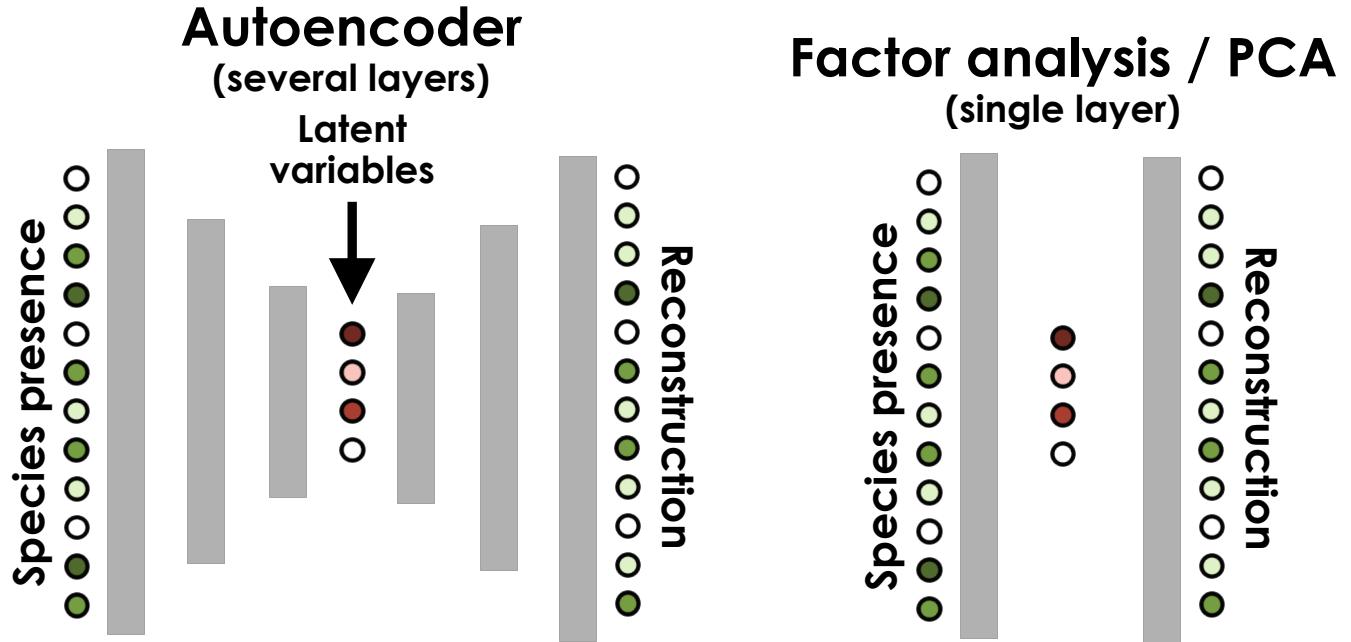
- Each species is an **indicator** of the type of environment it is in, but also **competes** with or aids other species nearby
- Identifying patterns of frequently co-occurring species can be very helpful for determining how **geography influences biodiversity**

Example: FloraBank1 dataset from Northern Belgium



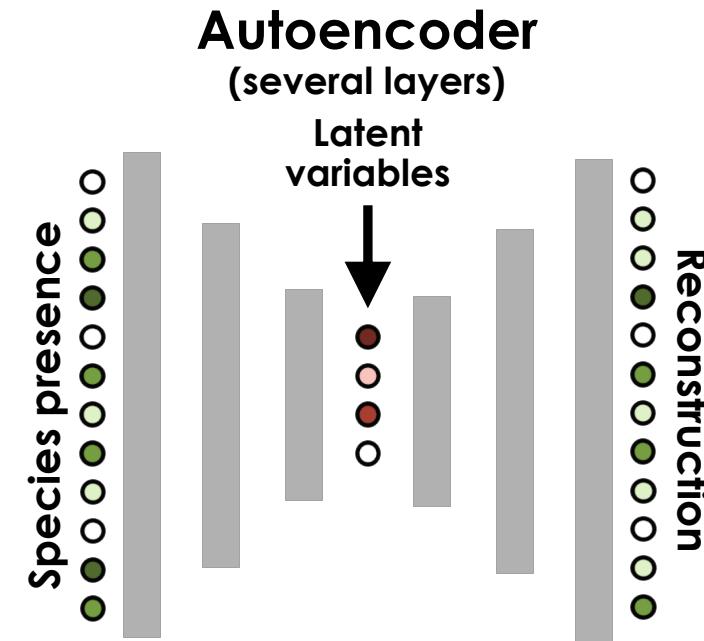
Latent Variable Models

- Identifying simplified structure in the data is largely synonymous with
 - Optimal compression (information theory)
 - Unsupervised learning (AI / machine learning)
 - Dimensionality reduction (statistics)
- Ecological hypothesis #1:** minimizing reconstruction error leads to latent variables significantly correlated with biogeographical features



Variational autoencoder

- x is a d -dimensional vector of binary observations
- \hat{p} is the reconstruction of x with each element indicating probability of occurrence for a single species
- β, λ are hyperparameters for regularization and imbalance correction, respectively
- $\mu_\phi(x), \nu_\phi(x)$ are neural networks mapping data vectors into mean/variance of latent state distribution



Single-point loss function:

$$L(x, \hat{p}) = \beta \cdot D_{KL} \left[\mathcal{N} \left(\mu_\phi(x), \nu_\phi(x) \right) \middle\| \mathcal{N}(0, I_L) \right] - \sum_{k=1}^K x_k \log \hat{p}_k + \lambda (1 - x_k) \log(1 - \hat{p}_k)$$

Regularization pushing latent codes to zero

Reconstruction loss summed over species

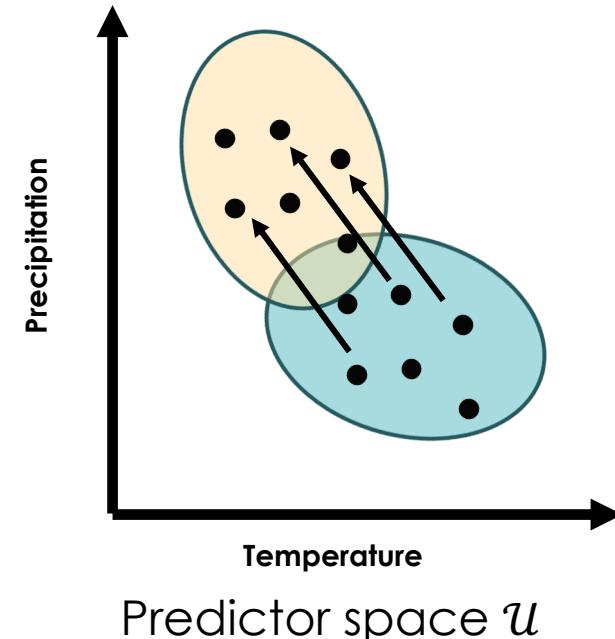
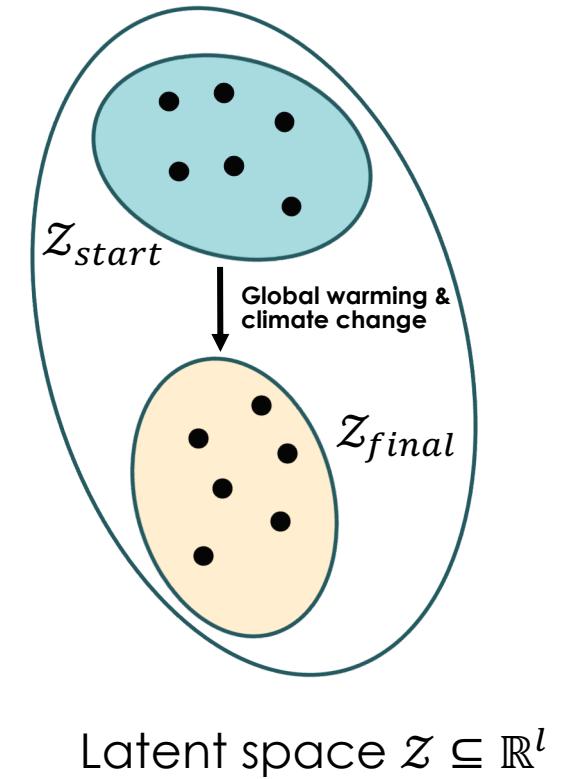
Mapping Expected Biogeographical shifts

Ecological hypothesis #2:

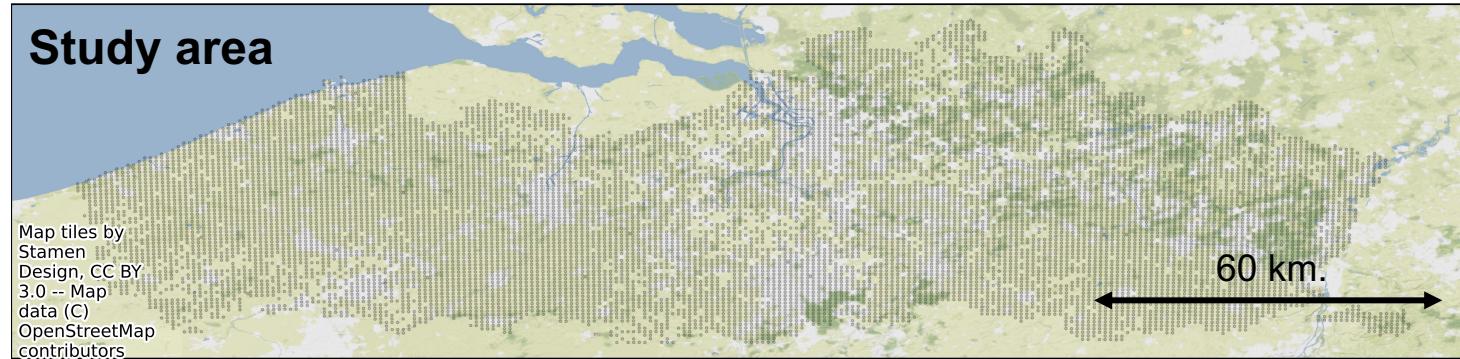
Clusters identified in latent space \mathcal{Z} can be interpreted as qualitatively and semantically distinct groupings of spatial sites into ecoregions

Ecological hypothesis #3:

Latent representations are sufficiently correlated with geographical predictor variables $u \in \mathcal{U} \subseteq \mathbb{R}^p$ such as rainfall and temperature that future shifts in species' distributions can be modeled using shifts in geographic variables via regression of latent representations upon predictors

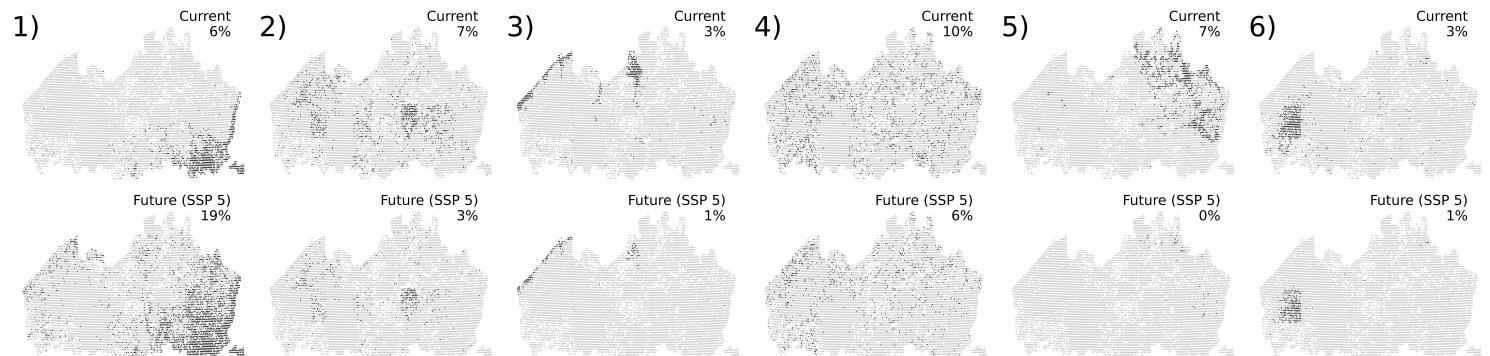


Mapping Expected Biogeographical shifts



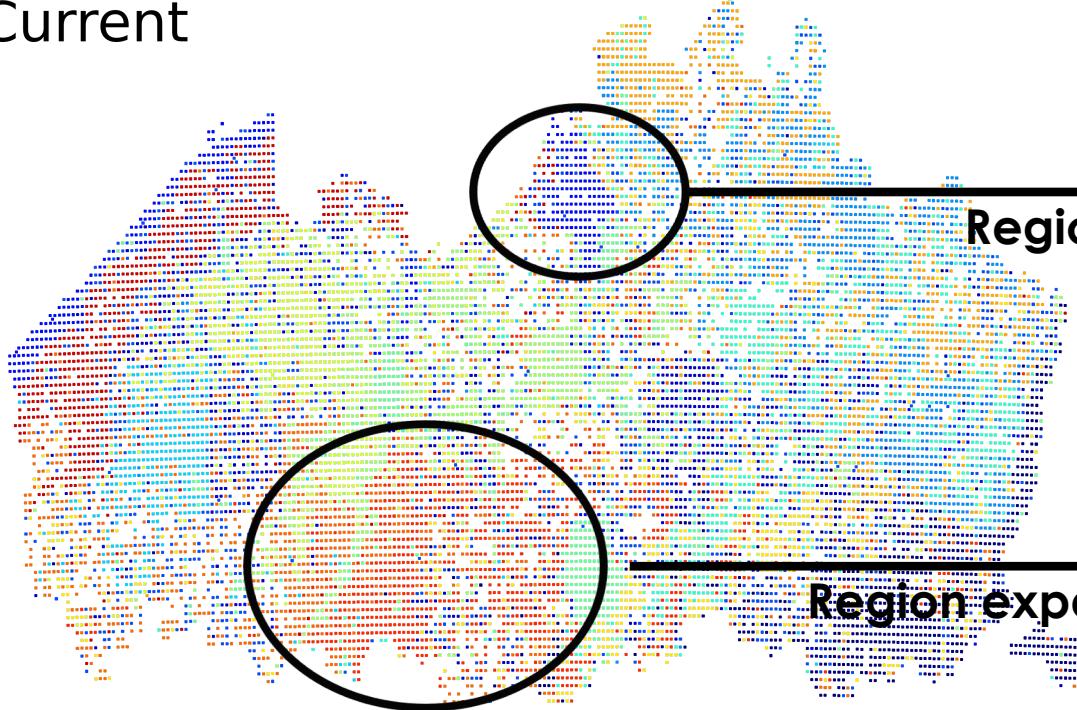
Region 3	
High probability	Low probability
<i>Equisetum sylvaticum</i>	<i>Atriplex laciniata</i>
<i>Myosotis nemorosa</i>	<i>Diphasiastrum tristachyum</i>
<i>Geranium versicolor</i>	<i>Malva pusilla</i>
<i>Carex strigosa</i>	<i>Ammophila arenaria</i>
<i>Polystichum aculeatum</i>	<i>Armeria maritima</i>
<i>Dactylis polygama</i>	<i>Euphorbia paralias</i>
<i>Helleborus viridis</i>	<i>Vicia faba</i>
<i>Gagea spathacea</i>	<i>Suaeda maritima</i>
<i>Anemone ranunculoides</i>	<i>Wahlenbergia hederacea</i>
<i>Luzula forsteri</i>	<i>Thlaspi caerulescens</i>

Cluster regions (6/15)

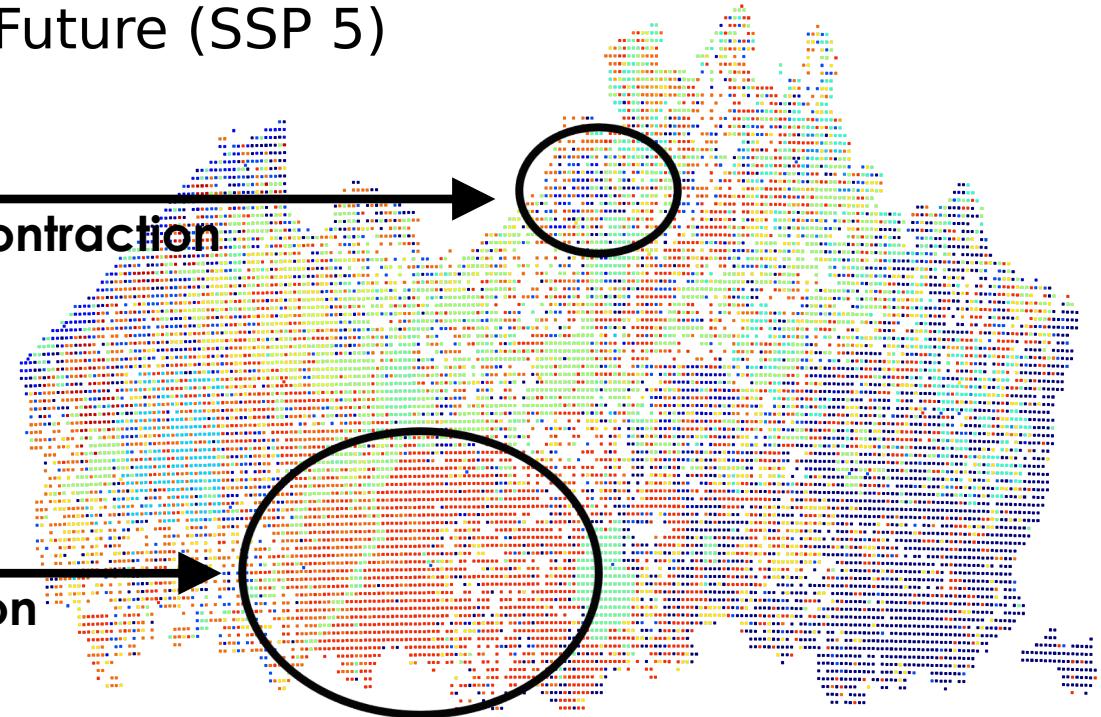


Clustering of locations before and after climate shifts

Current



Future (SSP 5)



Region contraction

Region expansion

Thanks for your time!