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|. Motivation

Why 1s Hurricane Forecasting worth our time?
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Machine Learning for Hurricane Forecasting



The Problem of Hurricane Forecasting

Tropical Cyclones (TC)

Draw energy from the
warm ocean waters.

Track and Intensity
forecasting tasks.
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The Problem of Hurricane Forecasting

No he cone contains the probable path of the storm cer ut does not show
ize of the storm. Hazardous con ns can occur outside of the cor

Bahamas
K

Track and Intensity

Fon, .7.85H 80 700
Tropical Storm Erika Current Information: @ Forecast Positions:

Saturday August29, 2015 Center Location 19.1 N 75.1 W @ Tropical Cyclone O Post-Tropical
5 AM EDT Advisory 18 Max Sustained Wind 40 mph

NWS National Hurricane Center

650

forecasting tasks.

Sustained Winds: D <39 mph
Movement WNW at 20 mph S 39-73 mph H 74-110 mph M > 110mph
Potential Track Area: Watches: Warnings:
O\ Day13 (ZZ Day4s Hurricane Trop.Storm [ Hurricane [ Trop.Storm
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Current forecasting approaches
-

: Statistical- Consensus
Dynamical Dynamical
: : Often simple or
Fluid Mechanics, PDEs Often regression-based weighted zg)verage of
Uses outputs from operational forecasts

. d | model
Strong Modeling Power ARIECEITREEE

Best performance
Fast to compute P

Slow, computationally

expensive .
Hiahl tive t Limited predictive power Relies on the
| sensitive to _ BF
ini%iaﬁ/zation Hardly uses multiple data ava'lab'.l'ty of
sources underlying models




Il. Formulate the
problem and identify
the challenges

| orecasting 1. The Problem



Our Goal

Advance hurricane forecasting skills for

both Iintensity and track

by utilizing distinct ML approaches and
combining multiple data sources.



Hurricanes since 1980

catgory
trop. depress.
trop. storm
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Multimodality: Three distinct data sources
e

Historical data Vision data: reanalysis maps

BASIN ISO_TIME LAT LON STORM_SPEED STORM_DIR
Pressure level
degrees_north degrees_east kts degrees .

(~altitude)

EP 2016-01-05 06:00:00 2.00000 -173.500 3 73

EP 2016-01-05 09:00:00 2.04500 -173.353 3 7 - 225hPa

EP 2016-01-05 12:00:00 2.10000 -173.200 3 67

EP 2016-01-05 15:00:00 2.17750 -173.042 4 56

Forecast data

Spaghetti Models -  Tropical Storm Sally Saturday
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Key Results

\\l V’ Our framework demonstrates a successful approach to
S combine of multiple data sources.

ML models outperform statistical models, and
competes with dynamical models.

Inclusion of Hurricast into an operational consensus

V model leads to a significant improvement of 5% - 15%
over NHC's official forecast.
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General Framework
-

1. Data Processing 2. Concatenation 3. Training and
Forecasting

Vision Data: Reanalysis Maps

Feature
BN extraction
with deep

Vision

Embeddings

learning

Intensity or
Track

I XGBoost
Model

Forecast

Statistical Data

2016-01-05 06:00:00 2.0000 -173.500 250 1006.0

Statistical

2016-01-05 09:00:00 2.0450 -173.353 250 1006.0
2016-01-05 12:00:00 2.1000 -173.200 250 1006.0 >

2016-01-05 15:00:00 2.1775 -173.042 250 10055 D a t a

2016-01-05 18:00:00 2.3000 -172.900 250 1005.0




General Framework
-

1. Data Processing 2. Concatenation 3. Training and
Forecasting

Vision Data: Reanalysis Maps

Feature
extraction
with deep

Vision

Embeddings

learning

Intensity or
Track

I XGBoost
Model

Forecast

Statistical Data

2016-01-05 06:00:00 2.0000 -173.500 250 1006.0

Statistical

2016-01-05 09:00:00 2.0450 -173.353 250 1006.0
2016-01-05 12:00:00 2.1000 -173.200 250 1006.0 >

1-05 15:00:00 2.1775 -173.042 250 10055 Data

2016-01-05 18:00:00 2.3000 -172.900 250 1005.0

Feature extraction is challenging.




General Framework

1. Data Processing

2. Concatenation

3. Training and
Forecasting

Vision Data: Reanalysis Maps

Feature
extraction
with deep

learning

Statistical Data

2016-01-05 06:00:00 2.0000 -173.500

r
1
1
1
1
<

250 1006.0

2016-01-05 09:00:00 2.0450 -173.353 250 1006.0

2016-01-05 12:00:00 2.1000 -173.200 250 10060 NN WENN EEEN EENN BENN BN EE +

2016-01-05 15:00:00 2.1775 -173.042

2016-01-05 18:00:00 2.3000 -172.900 1005.0

Statistical data is used twice.

Vision

Embeddings

Intensity or

XGBoost Track

Model

-

Forecast

Statistical
Data




General Framework
-

1. Data Processing 2. Concatenation 3. Training and
Forecasting

Vision Data: Reanalysis Maps

Feature

extraction Vision I
r with deep Embeddings
1 learning Intensity or
| XGBoost y
o I Model Track
Statistical Data Forecast
2016;0!;060900‘00 2:0450 ;173353 25:0 mnsio J * Stat|st|ca| I
B b Data

Tree-based models are powerful.




General Framework
-

1. Data Processing 2. Concatenation 3. Training and
Forecasting

Vision Data: Reanalysis Maps

Feature
extraction
with deep

learning

Vision

Embeddings

Intensity or
Track

I XGBoost
Model

Forecast

Statistical Data

2016-01-05 06:00:00 2.0000 -173.500 250

Statistical
Data

2016-01-05 09:00:00 2.0450 -173.353 250

2016-01-05 12:00:00 2.1000 -173.200 250

2016-01-05 15:00:00 2.1775 -173.042

2016-01-05 18:00:00 2.3000 -172.900




Multimodality
R

BASIN

Tabular data

ISO_TIME

LAT

LON STORM_SPEED

STORM_DIR

EP

EP

EP
EP

2016-01-05 06:00:00
2016-01-05 09:00:00
2016-01-05 12:00:00

2016-01-05 15:00:00

degrees_north
2.00000
2.04500
2.10000

217750

degrees_east
-173.500
-173.353
-173.200

-173.042

degrees
73
71
67
56

Vision data: reanalysis maps
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Encoder-Decoder Architecture
—

Feature
vector
(embed

dings)

Decoder



Encoder-Decoder Architecture
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Encoder-Decoder Architecture

1. Encoding

Statistical Data

Statistical Data

t-18h , Embedtiss
1 e CNN ]
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Encoder-Decoder Architecture

-
1. Encoding 2. Decoding
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Encoder-Decoder Architecture

-
1. Encoding 2. Decoding
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Encoder-Decoder Architecture

-
1. Encoding 2. Decoding
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Supervised learning task!
We have specific
targets.

Stats We can use
backpropagation.




Encoder-Decoder Architecture

1. Encoding 2. Decoding
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Attention Mechanisms

O Features A
Features B

Disclaimer: this is a very schematic representation of what happens in reality




Transformers™

Output
Probabilities

-
Add & Norm B
Feed
Forward
s ~\ Add & Norm
_ .
£ad S N Multi-Head ( |
Feed Attention
Forward D) Nx
 —
Nix Add & Norm
f—>' Add & Norm ' Macked
Multi-Head Multi-Head
Attention Attention
t , Y, T )

Qo J g —
Positional D ¢ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Machine Learning for Hurricane Forecasting

Multi-head attention

Scaled Dot-Product

Attention

1

1 1

r-= r-= -2
Linear Linear Linear

K Q

Zoom-In!

. Methodology

Scaled dot-product attention

MatMul

Zoom-In!

*Vaswani et al, 2017




Encoder-Decoder Architecture
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Encoder-Decoder Architecture

-
1. Encoding 2. Decoding
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Encoder-Decoder Architecture

-
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Encoder-Decoder Architecture

-
1. Encoding 2. Decoding
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General Framework

1. Data Processing

2. Concatenation

3. Training and
Forecasting

Vision Data: Reanalysis Maps

Feature
N extraction
with deep
learning

Statistical Data

2016-01-05 06:00:00 2.0000 -173.500 250 1006.0

2016-01-05 09:00:00 2.0450 -173.353 250 1006.0
2016-01-05 12:00:00 2.1000 -173.200 250 1006.0

1-05 15:00:00 2.1775 -173.042

2016-01-05 18:00:00 2.3000 -172.900 250 1005.0

Vision

Embeddings

Statistical
Data

Intensity or
Track
Forecast

I XGBoost
Model

One-dimensional vector



V. Results



Training, Validation, Testing

Data ranges from 1980 to 2020

We use a validation strategy.

1980 2012 2016 2020
Training Val ' Test
80% 10% 10%
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Intensity results

Eastern Pacific Basin North Atlantic Basin

Model Type Model Name Comparison on 36 TC Comparison on 45 TC
MAE (kn) Error sd (kn) MAE (kn) Error sd (kn)

HURR-(viz, cnn/gru) 10.7 10.1 114 9.6

Hurricast HURR-(viz, cnn/transfo) 10.5 10.0 114 9.5

(HURR) HURR-(stat, xgb) 10.5 10.4 10.8 9.3

Methods HURR-(stat/viz, xgb/enn/gru) 10.3 10.1 10.8 9.3

HURR-(stat/viz, xgb/cnn/transfo) 10.3 9.8 10.4 8.8

- Combining data sources has a significant edge.
- Using XGBoost on top of Deep Learning-extracted features has a clear edge.
- Transformer slightly better than GRU.
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Intensity results
B

Eastern Pacific Basin North Atlantic Basin

Model Type Model Name Comparison on 36 TC Comparison on 45 TC
MAE (kn) Error sd (kn) MAE (kn) Error sd (kn)

HURR-(viz, cnn/gru) 10.7 10.1 114 9.6

Hurricast HURR-(viz, cnn/transfo) 10.5 10.0 114 9.5

(HURR) HURR-(stat, xgb) 10.5 10.4 10.8 9.3

Methods HURR-(stat/viz, xgb/cnn/gru) 10.3 10.1 10.8 9.3

HURR-(stat/viz, xgb/cnn/transfo) 10.3 9.8 10.4 8.8

Standalone Decay-SHIPS 11.7 10.4 10.2 9.3

Operational HWRF 10.6 11.0 9.7 9.0

Forecasts GFSO 15.7 14.7 14.2 14.1

Very competitive or better performance than the top statistical-dynamical
and best dynamical models!
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Track results
N S

Eastern Pacific Basin North Atlantic Basin
Model Type Model Name Comparison on 36 TC Comparison on 45 TC
MAE (km) Error sd (km) MAE (km) Error sd (km)

HURR-(viz, cnn/gru) 73 43 114 83

Hurricast HURR-(viz, cnn/transfo) 73 44 110 71
(HURR) HURR-(stat, xgb) 81 47 144 109
Methods HURR-(stat/viz, xgb/cnn/gru) 71 43 110 79
HURR-(stat/viz, xgb/cnn/transfo) 72 43 110 72

- Combining data sources has a significant edge.
- Using XGBoost on top of Deep Learning-extracted features is useful.
- GRU and Transformer approaches perform similarly.
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Track results
N S

Eastern Pacific Basin North Atlantic Basin

Model Type Model Name Comparison on 36 TC Comparison on 45 TC
MAE (km) Error sd (km) MAE (km) Error sd (km)

HURR-(viz, cnn/gru) 73 43 114 83

Hurricast HURR-(viz, cnn/transfo) 73 44 110 71

(HURR) HURR-(stat, xgb) 81 47 144 109

Methods HURR-(stat/viz, xgb/cnn/gru) 71 43 110 79

HURR-(stat/viz, xgb/cnn/transfo) 72 43 110 72

Standalone CLP5 121 67 201 149

Operational HWRF 67 42 75 49

Forecasts GFSO 65 45 71 54

Performance getting close to the top operational forecast models.
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Track results
N S

Eastern Pacific Basin North Atlantic Basin
Model Type Model Name Comparison on 36 TC Comparison on 45 TC
MAE (km) Error sd (km) MAE (km) Error sd (km)

HURR-(viz, cnn/gru) 73 43 114 83

Hurricast HURR-(viz, cnn/transfo) 73 44 110 71
(HURR) HURR-(stat, xgb) 81 47 144 109
Methods HURR-(stat/viz, xgb/cnn/gru) 71 43 110 79
HURR-(stat/viz, xgb/cnn/transfo) 72 43 110 72
Standalone 121 67 201 149
Operational 67 42 75 49
Forecasts 65 45 71 54

We have many models, let’'s ensemble them!
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V. Ensemble models




Hurricast ensemble
-

HURR Forecasts

HURR-(viz, cnn/gru)

HURR-(viz, cnn/transfo)

Weighted

HURR-(stat, xgb) Final Forecast

average

HURR-(stat/viz, xgb,cnn,gru)

HURR-(stat/viz, xgb,cnn,transfo)
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Hurricast + Operational forecasts average
[

Best HURR Forecast ™
HURR-(stat/viz, xgb,cnn,transfo)

Operational Forecasts

Statistical-dynamical forecast

Simple
average

Final Forecast

Dynamical forecast 1

Dynamical forecast 2

Ensemble forecast
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Intensity Results
B

Eastern Pacific Basin North Atlantic Basin

Model Type Model Name Comparison on 36 TC Comparison on 45 TC
MAE (kn) Error sd (kn) MAE (kn) Error sd (kn)

Hurricast (HURR) HURR-(stat/viz, xgb/cnn/transfo) 10.3 9.8 10.4 8.8

Methods HURR-consensus 10.2 9.9 10.2 8.9

Operational FSSE 9.7 9.5 8.5 7.8

Forecasts OFCL 10.0 10.1 8.5 8.1

Average consensus op. forecast 9.6 9.7 8.5 7.9

Consensus Models

HURR/OP-average consensus 9.2 9.0 8.3 7.6

- Ensembling our models improves performance.
- Including HURR into a simple operational forecast consensus is beneficial.



Track Results

Eastern Pacific Basin North Atlantic Basin
Model Type Model Name Comparison on 36 TC Comparison on 45 TC
MAE (km) Error sd (km) MAE (km) Error sd (km)
Hurricast (HURR) HURR-(stat/viz, xgb/cnn/transfo) 72 43 110 72
methods HURR-consensus 68 41 107 77
AEMN 60 37 73 55
tional
Operationa FSSE 56 47 69 53
Forecasts

OFCL 54 33 71 56
Average consensus op. forecast 55 37 64 48

Consensus Models
HURR/OP-average consensus 50 32 61 43

- Ensembling our models improves performance.
- Including HURR into a simple operational forecast consensus is beneficial.



VI. Exciting
applications

VI. Exciting applications



Other applications of the framework
- 1]

1. Data Processing 2. Concatenation 3. Training and
Forecasting

Feature

Vision Data Ko o ex_traction
with deep
Statistical
Data

Tree-based .
-+— (i

Vision
Embeddings

Statistical
-

learning




Satellite data holds a lot of potential

QN

Machine Learning for Hurricane Forecasting VI. EXCiting applications




Conclusion

NV _ .
lp Multimodality and ensemble models are
»  powerful!

d

I Machine Learning can advance hurricane
forecasting.

Significant potential of feature extraction
techniques combined with tree-based models.



Thank you for your attention!
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