

Hurricast

Hurricane Forecasting: A Novel Multimodal Machine Learning Framework

Léonard Boussioux, Cynthia Zeng
Joint work with Dimitris Bertsimas and Théo Guénais

I. Motivation

Why is Hurricane Forecasting worth our time?

Katrina

1836 deaths

\$250bn loss

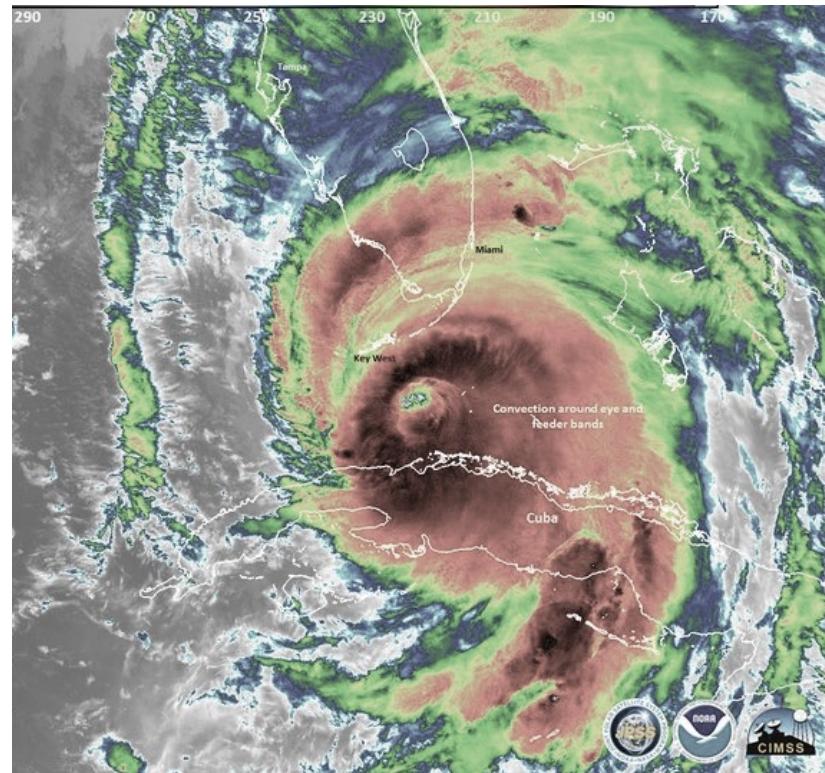
Sources: [1] New York Times

The Problem of Hurricane Forecasting

Tropical Cyclones (TC)

Draw energy from the warm ocean waters.

Track and Intensity forecasting tasks.

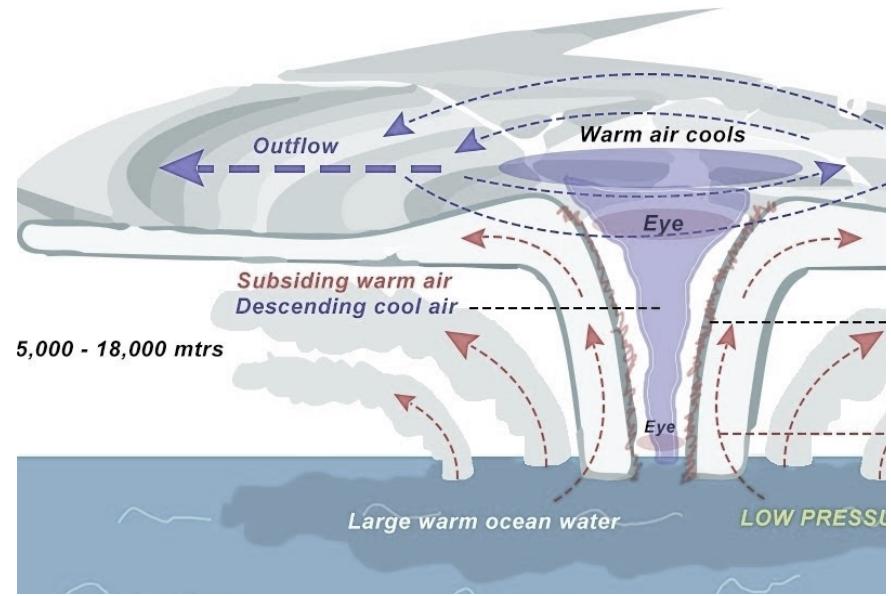


The Problem of Hurricane Forecasting

Tropical Cyclones (TC)

Draw energy from the warm ocean waters.

Track and Intensity forecasting tasks.

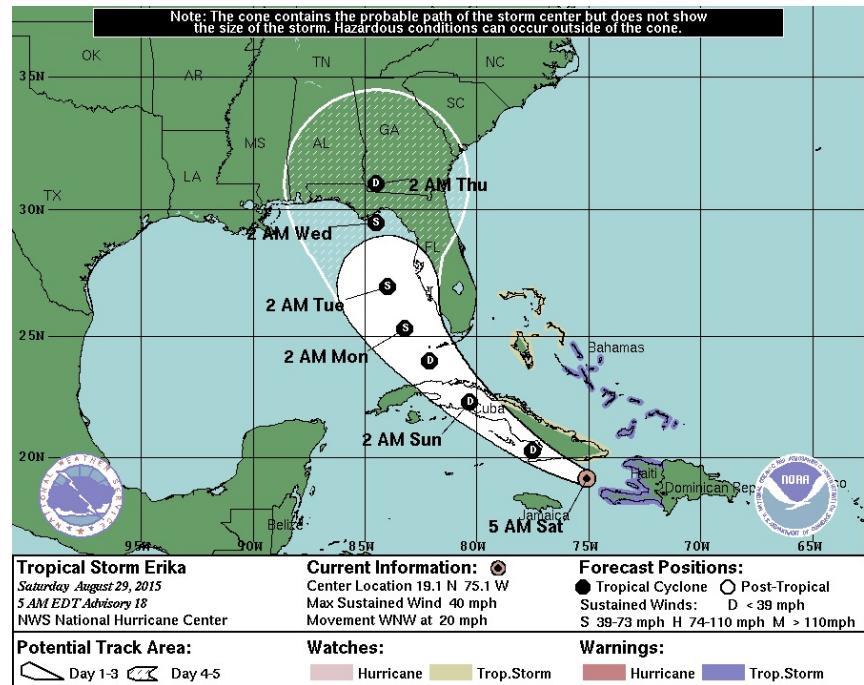


The Problem of Hurricane Forecasting

Tropical Cyclones (TC)

Draw energy from the warm ocean waters.

Track and Intensity forecasting tasks.



Current forecasting approaches

Dynamical

Fluid Mechanics, PDEs

Strong Modeling Power

Slow, computationally expensive

Highly sensitive to initialization

Statistical-Dynamical

Often regression-based

Uses outputs from dynamical models

Fast to compute

Limited predictive power

Hardly uses multiple data sources

Consensus

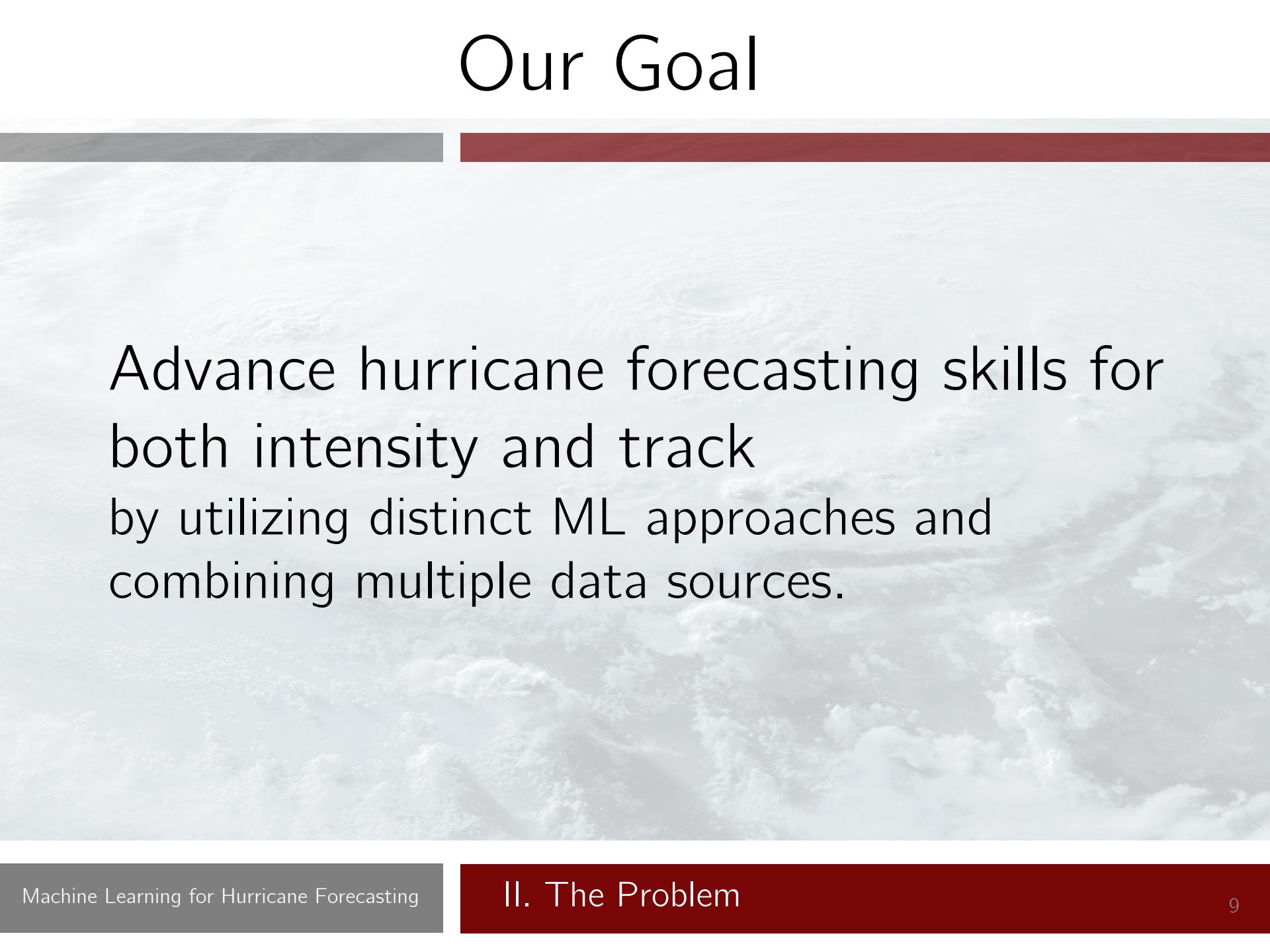
Often simple or weighted average of operational forecasts

Best performance

Relies on the availability of underlying models

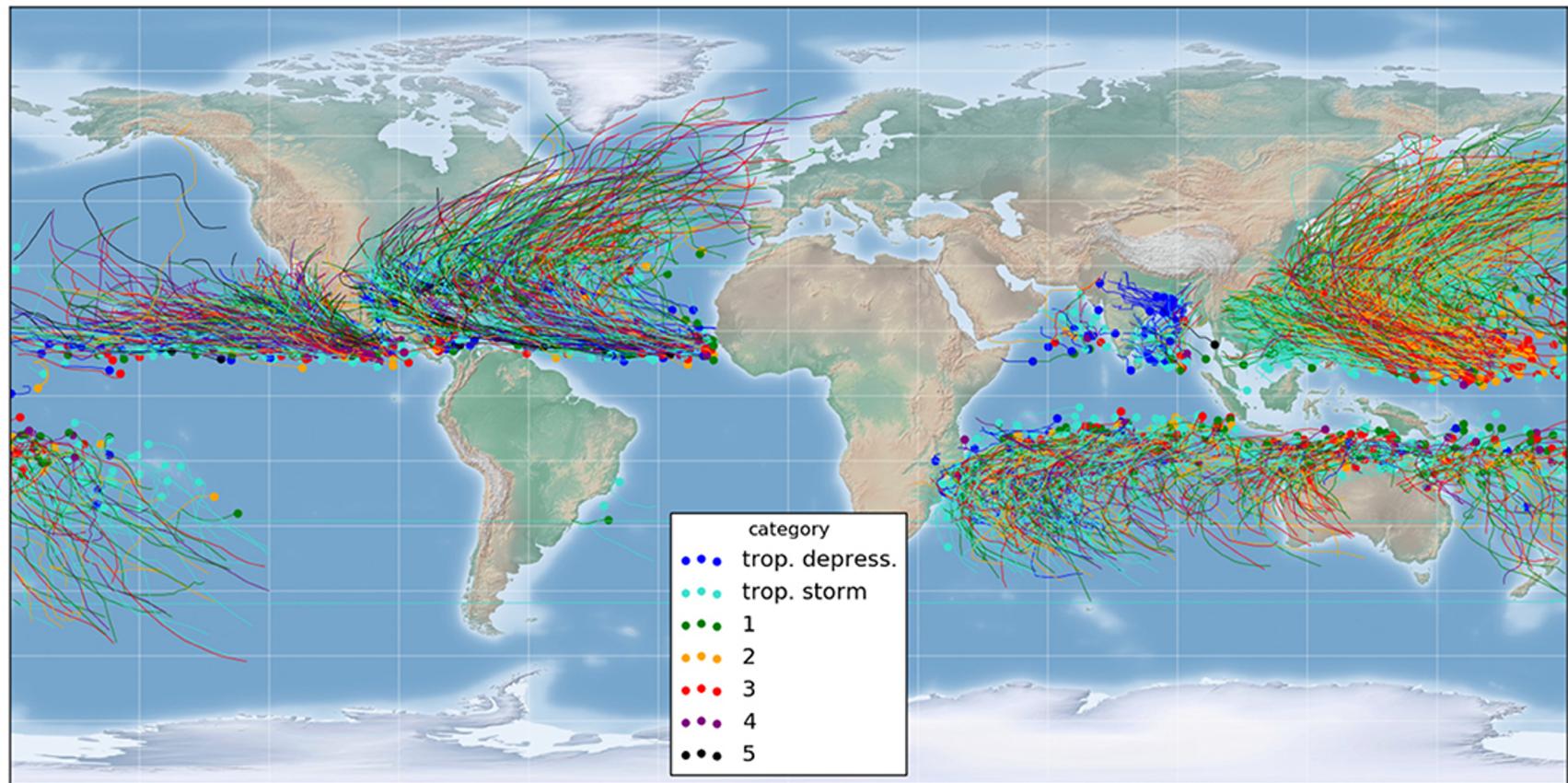
II. Formulate the problem and identify the challenges

Our Goal



Advance hurricane forecasting skills for both intensity and track by utilizing distinct ML approaches and combining multiple data sources.

Hurricanes since 1980



Picture source: www.frontiersin.org/articles/10.3389/fdata.2020.00001/full

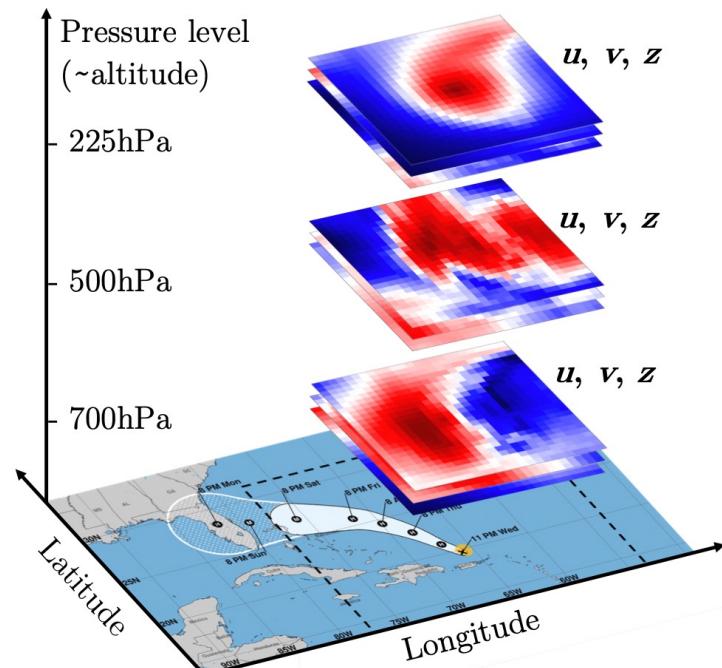
Multimodality: Three distinct data sources

Historical data

BASIN	ISO_TIME	LAT	LON	STORM_SPEED	STORM_DIR
		degrees_north	degrees_east		
EP	2016-01-05 06:00:00	2.00000	-173.500	3	73
EP	2016-01-05 09:00:00	2.04500	-173.353	3	71
EP	2016-01-05 12:00:00	2.10000	-173.200	3	67
EP	2016-01-05 15:00:00	2.17750	-173.042	4	56

Forecast data

Vision data: reanalysis maps



Key Results

Our framework demonstrates a successful approach to combine of multiple data sources.

ML models outperform statistical models, and competes with dynamical models.

Inclusion of Hurricast into an operational consensus model leads to a significant improvement of 5% - 15% over NHC's official forecast.

III. The Hurricast Methodology

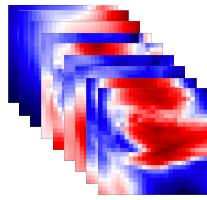
General Framework

1. Data Processing

2. Concatenation

3. Training and Forecasting

Vision Data: Reanalysis Maps

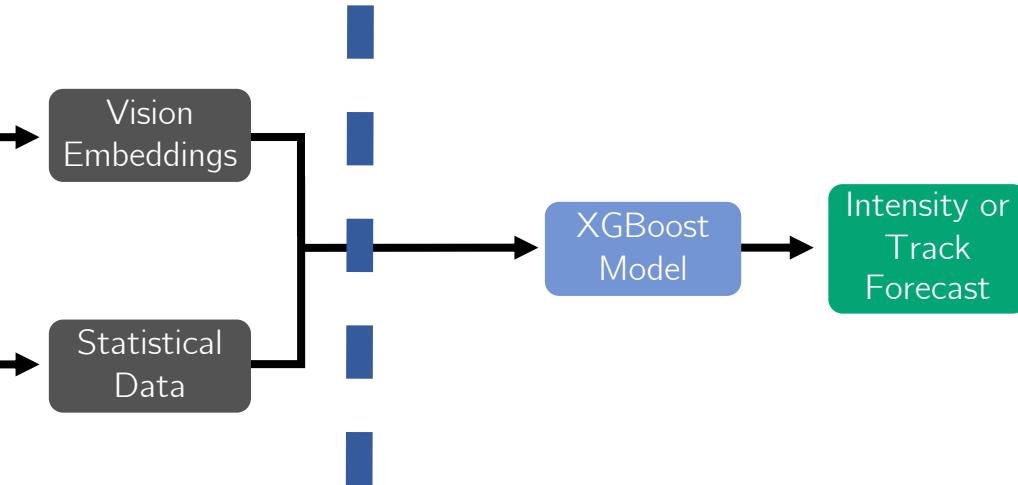


Feature extraction with deep learning

Statistical Data

	IMO PRES		
2016-01-05 06:00:00	2.0000	-173.500	25.0
2016-01-05 09:00:00	2.0450	-173.353	25.0
2016-01-05 12:00:00	2.1000	-173.200	25.0
2016-01-05 15:00:00	2.1775	-173.042	25.0
2016-01-05 18:00:00	2.3000	-172.900	25.0
			1006.0
			1006.0
			1006.0
			1005.5
			1005.0

Statistical Data



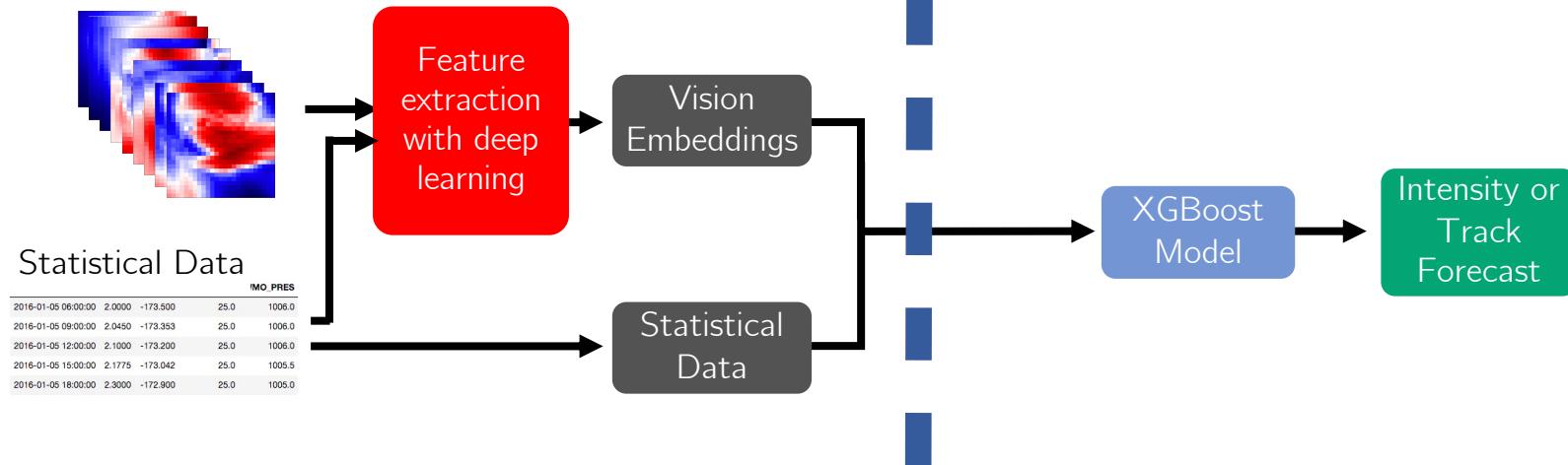
General Framework

1. Data Processing

2. Concatenation

3. Training and Forecasting

Vision Data: Reanalysis Maps



Feature extraction is challenging.

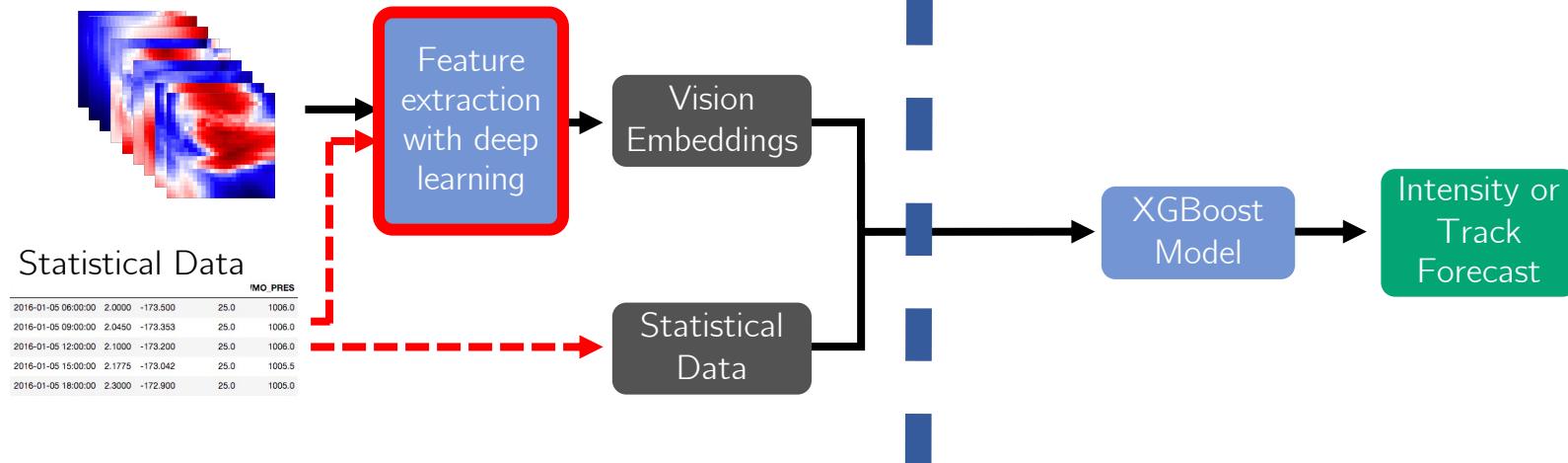
General Framework

1. Data Processing

2. Concatenation

3. Training and Forecasting

Vision Data: Reanalysis Maps



Statistical data is used twice.

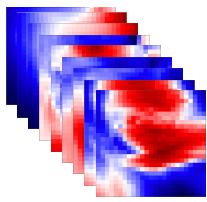
General Framework

1. Data Processing

2. Concatenation

3. Training and Forecasting

Vision Data: Reanalysis Maps



Feature extraction with deep learning

Statistical Data

	IMO PRES		
2016-01-05 06:00:00	2.0000	-173.500	25.0
2016-01-05 09:00:00	2.0450	-173.353	25.0
2016-01-05 12:00:00	2.1000	-173.200	25.0
2016-01-05 15:00:00	2.1775	-173.042	25.0
2016-01-05 18:00:00	2.3000	-172.900	25.0
			1006.0
			1006.0
			1006.0
			1005.5
			1005.0

Statistical Data

Vision Embeddings

XGBoost Model

Intensity or Track Forecast

Tree-based models are powerful.

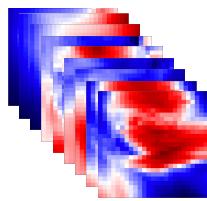
General Framework

1. Data Processing

2. Concatenation

3. Training and Forecasting

Vision Data: Reanalysis Maps



Feature extraction with deep learning

Statistical Data

IMO PRES				
2016-01-05 06:00:00	2.0000	-173.500	25.0	1006.0
2016-01-05 09:00:00	2.0450	-173.353	25.0	1006.0
2016-01-05 12:00:00	2.1000	-173.200	25.0	1006.0
2016-01-05 15:00:00	2.1775	-173.042	25.0	1005.5
2016-01-05 18:00:00	2.3000	-172.900	25.0	1005.0

Vision Embeddings

Statistical Data

XGBoost Model

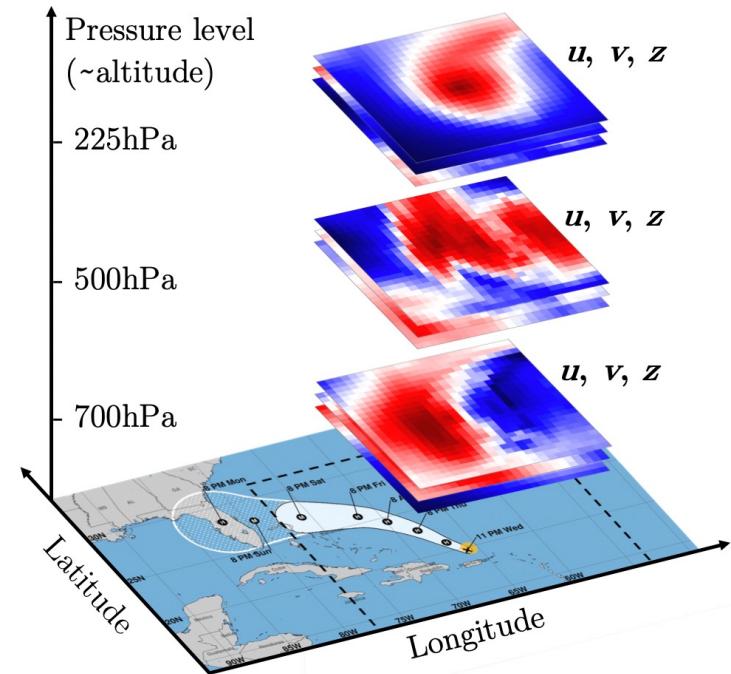
Intensity or Track Forecast

Multimodality

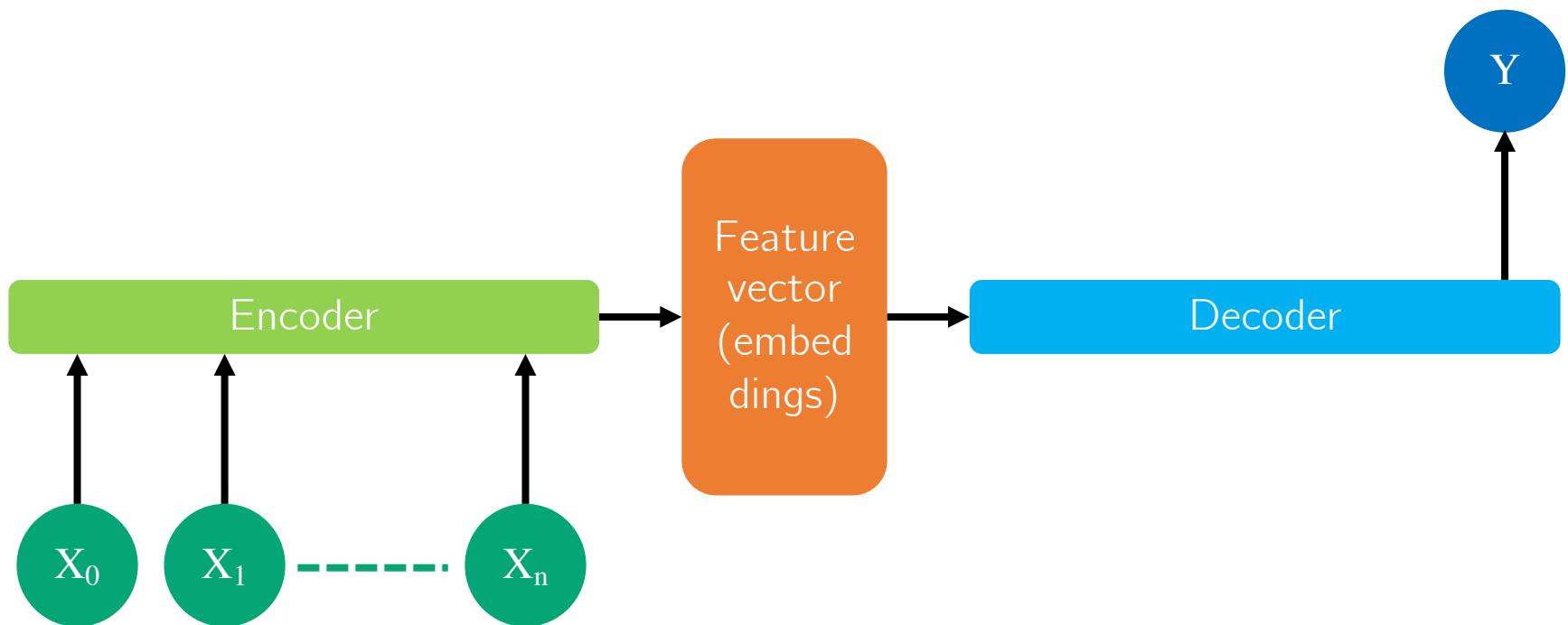
Tabular data

BASIN	ISO_TIME	LAT	LONG	STORM_SPEED	STORM_DIR
		degrees_north	degrees_east	kts	degrees
EP	2016-01-05 06:00:00	2.00000	-173.500	3	73
EP	2016-01-05 09:00:00	2.04500	-173.353	3	71
EP	2016-01-05 12:00:00	2.10000	-173.200	3	67
EP	2016-01-05 15:00:00	2.17750	-173.042	4	56

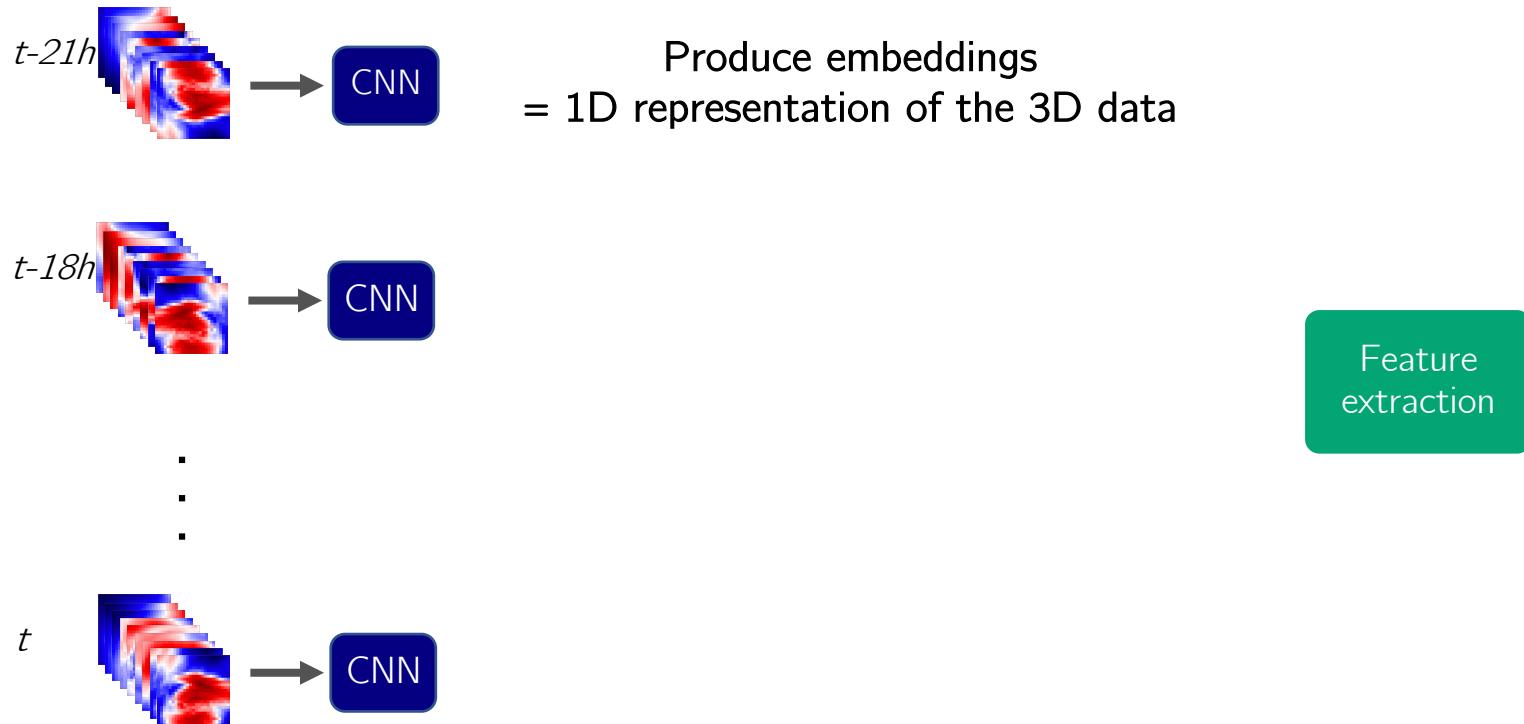
Vision data: reanalysis maps



Encoder-Decoder Architecture

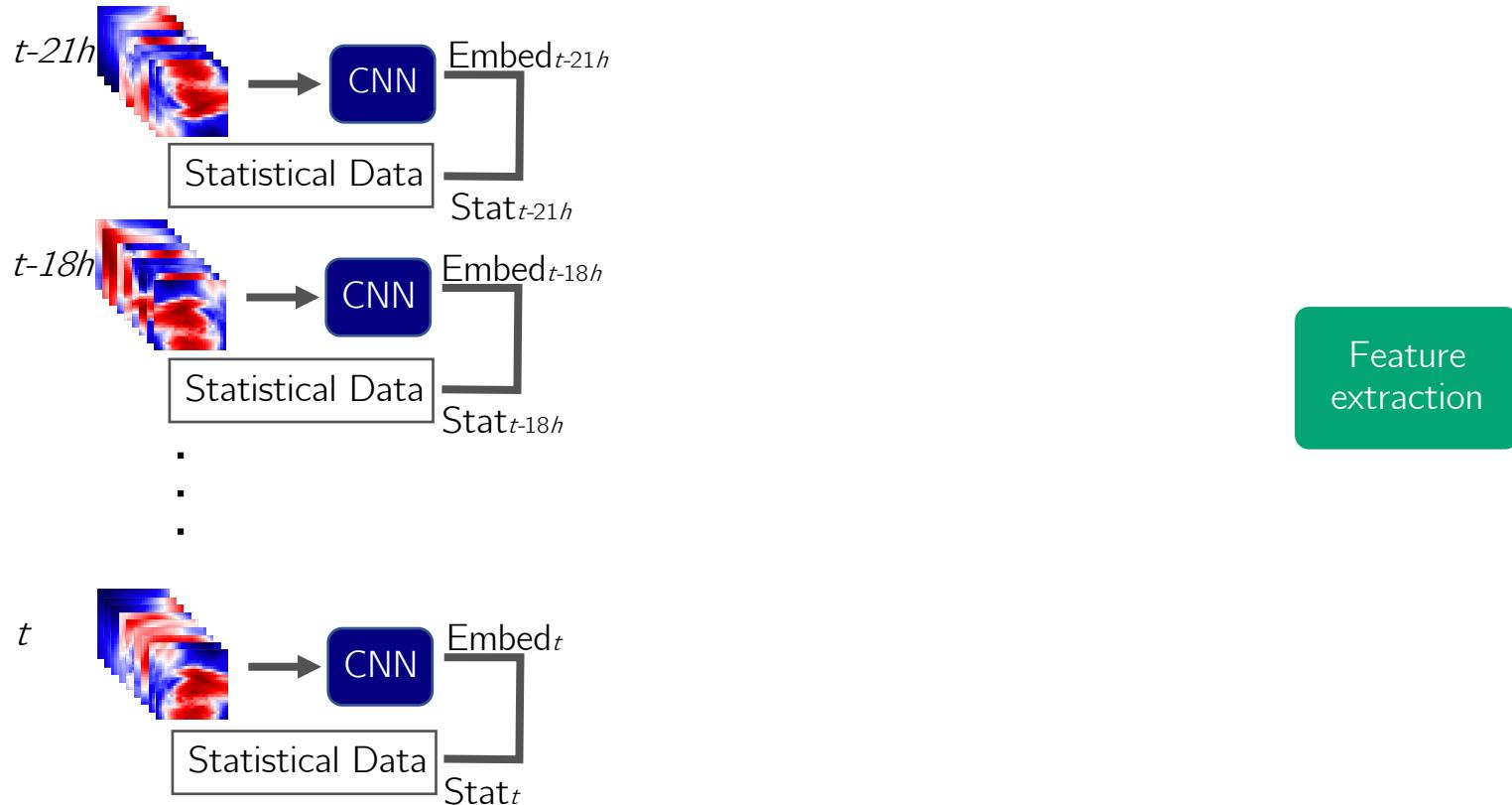


Encoder-Decoder Architecture

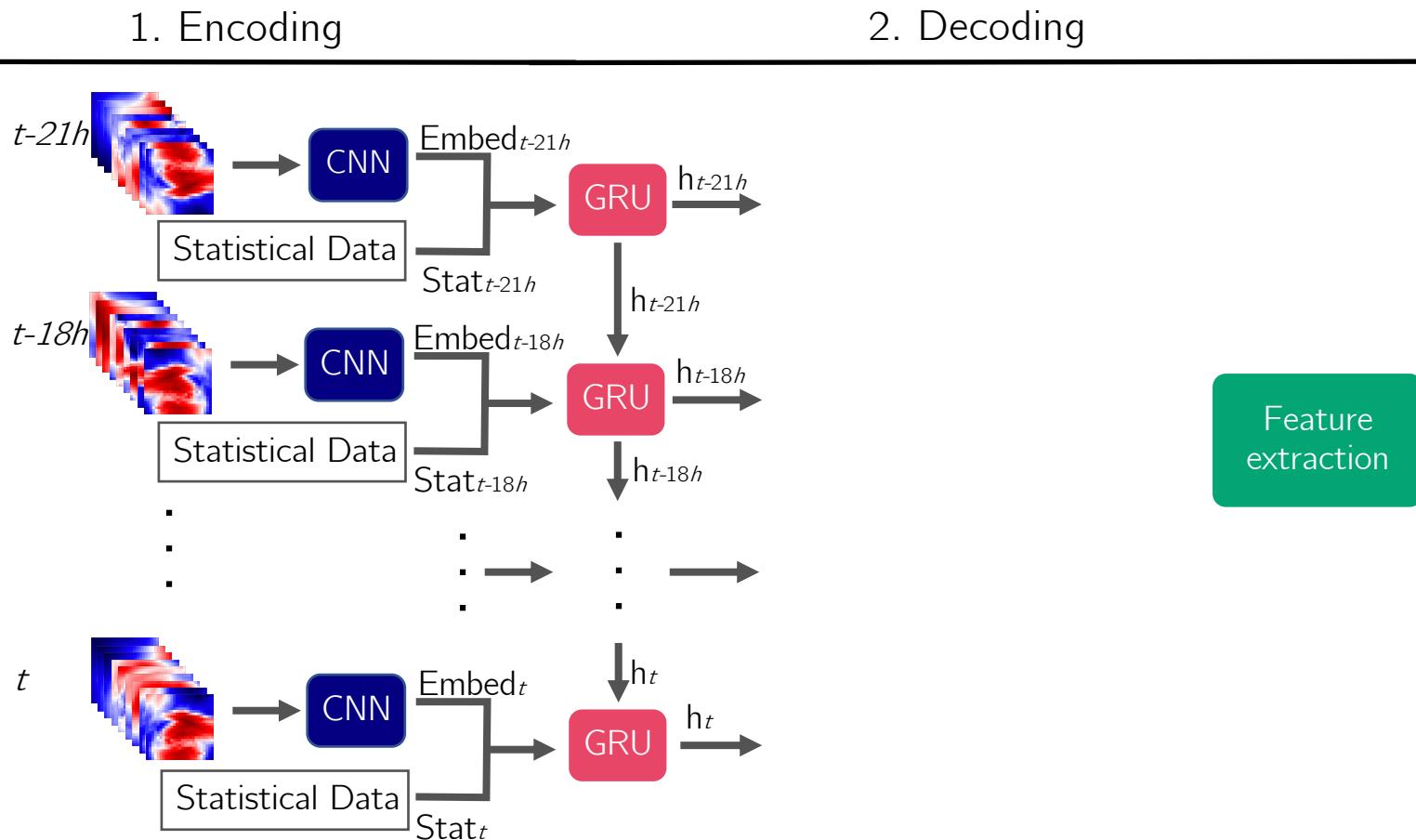


Encoder-Decoder Architecture

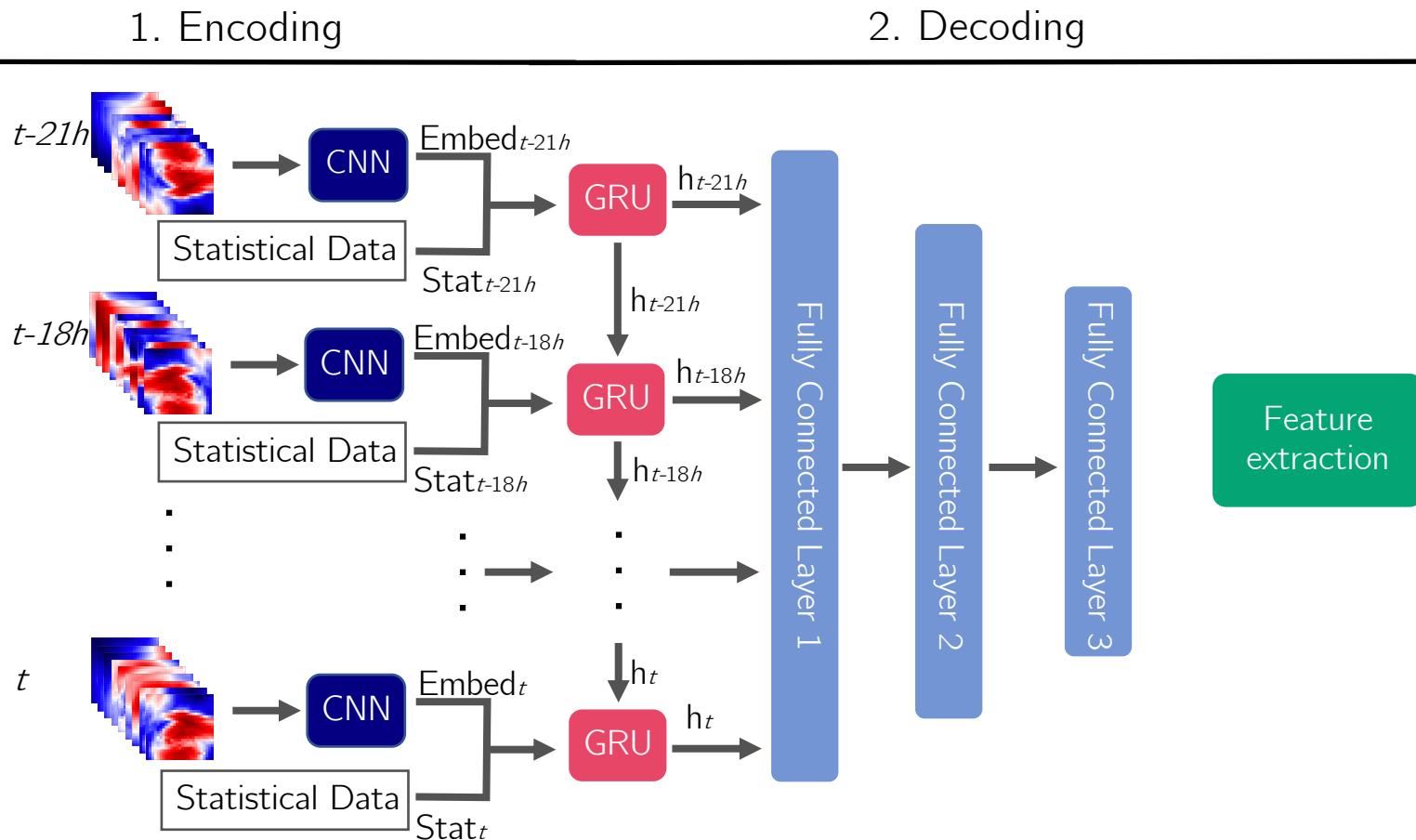
1. Encoding



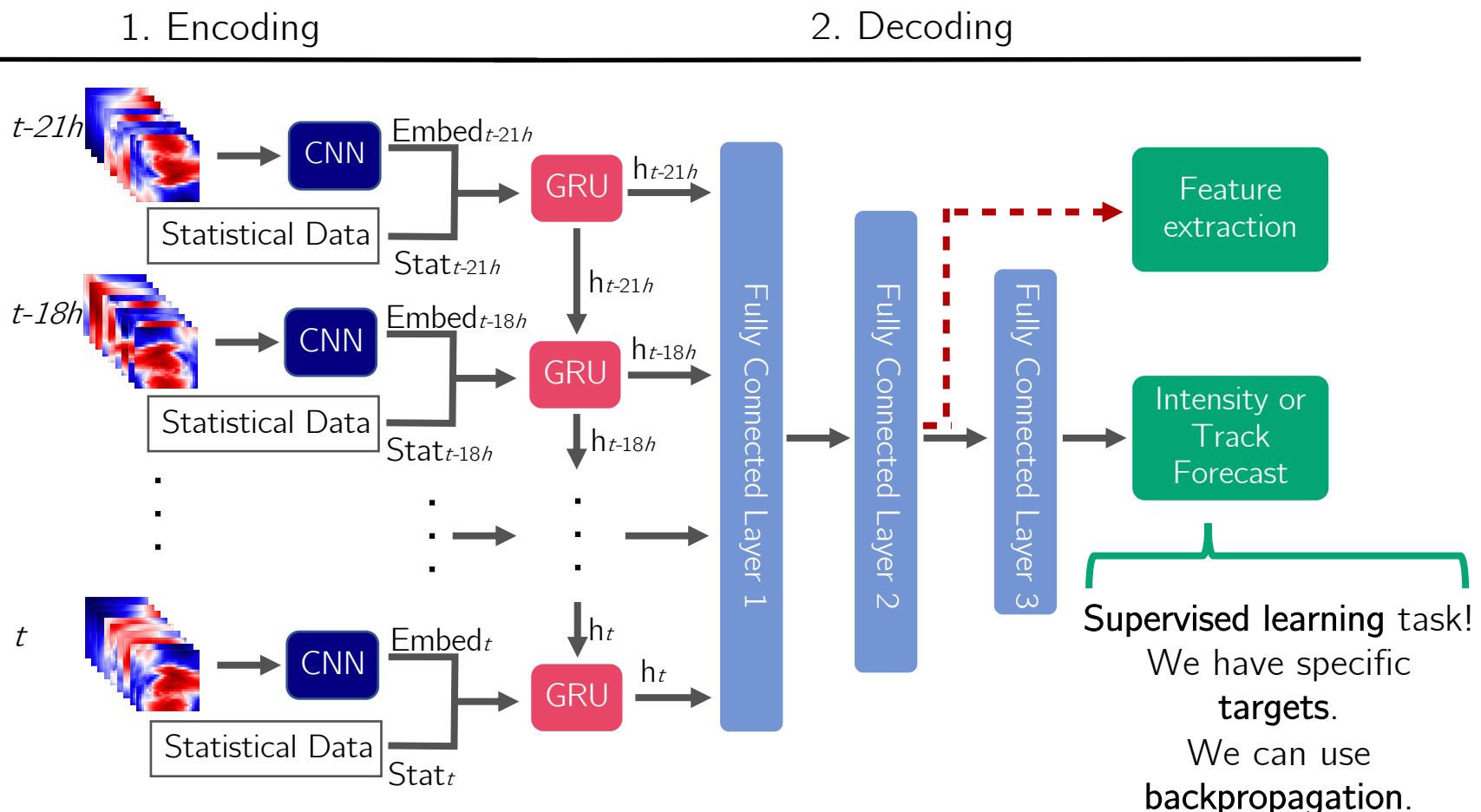
Encoder-Decoder Architecture



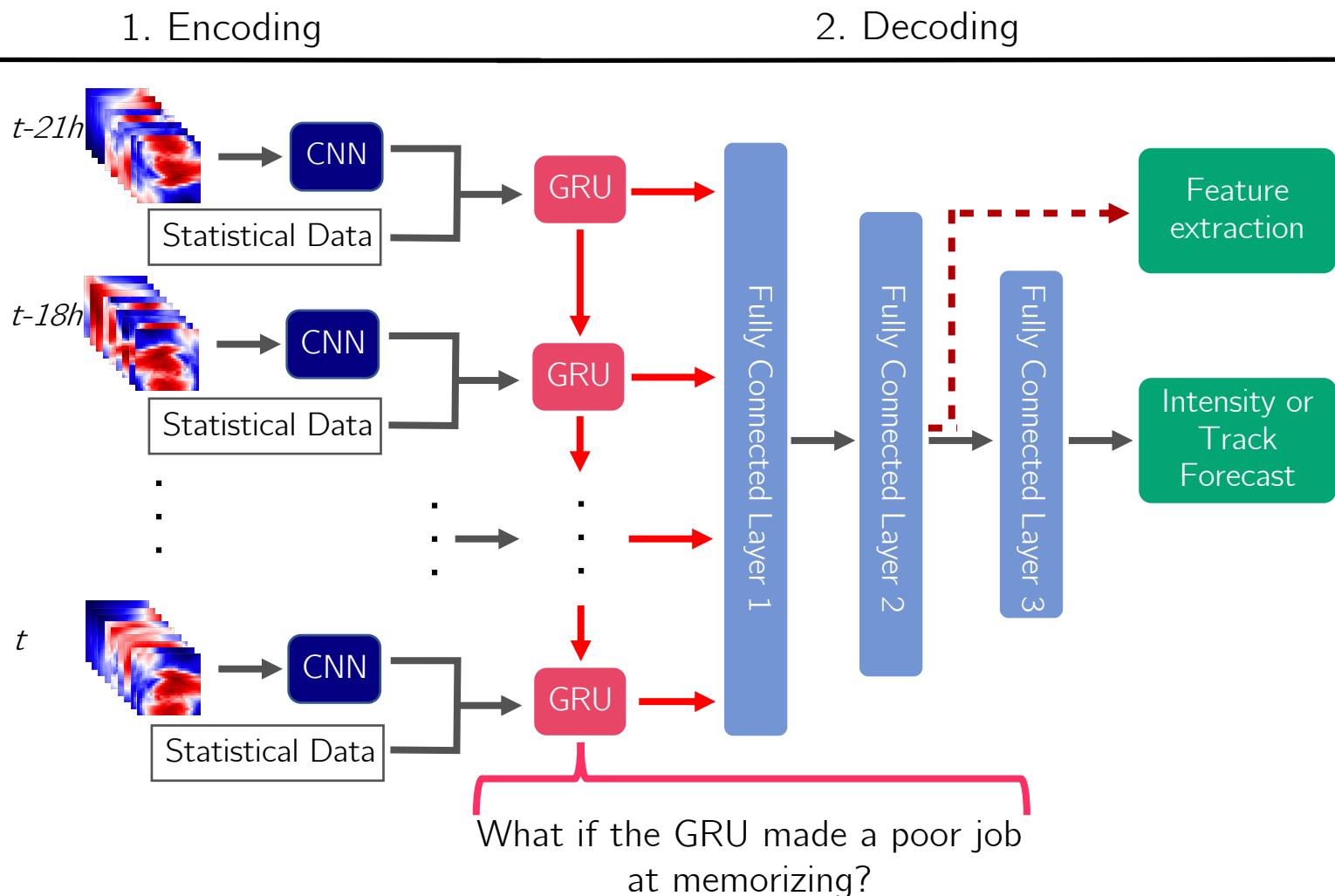
Encoder-Decoder Architecture



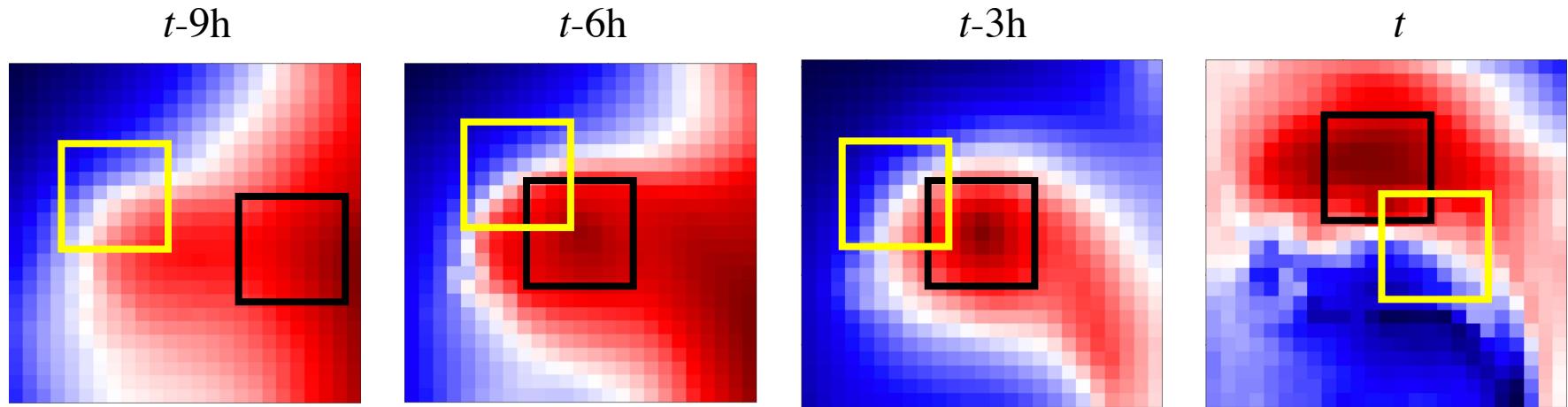
Encoder-Decoder Architecture



Encoder-Decoder Architecture



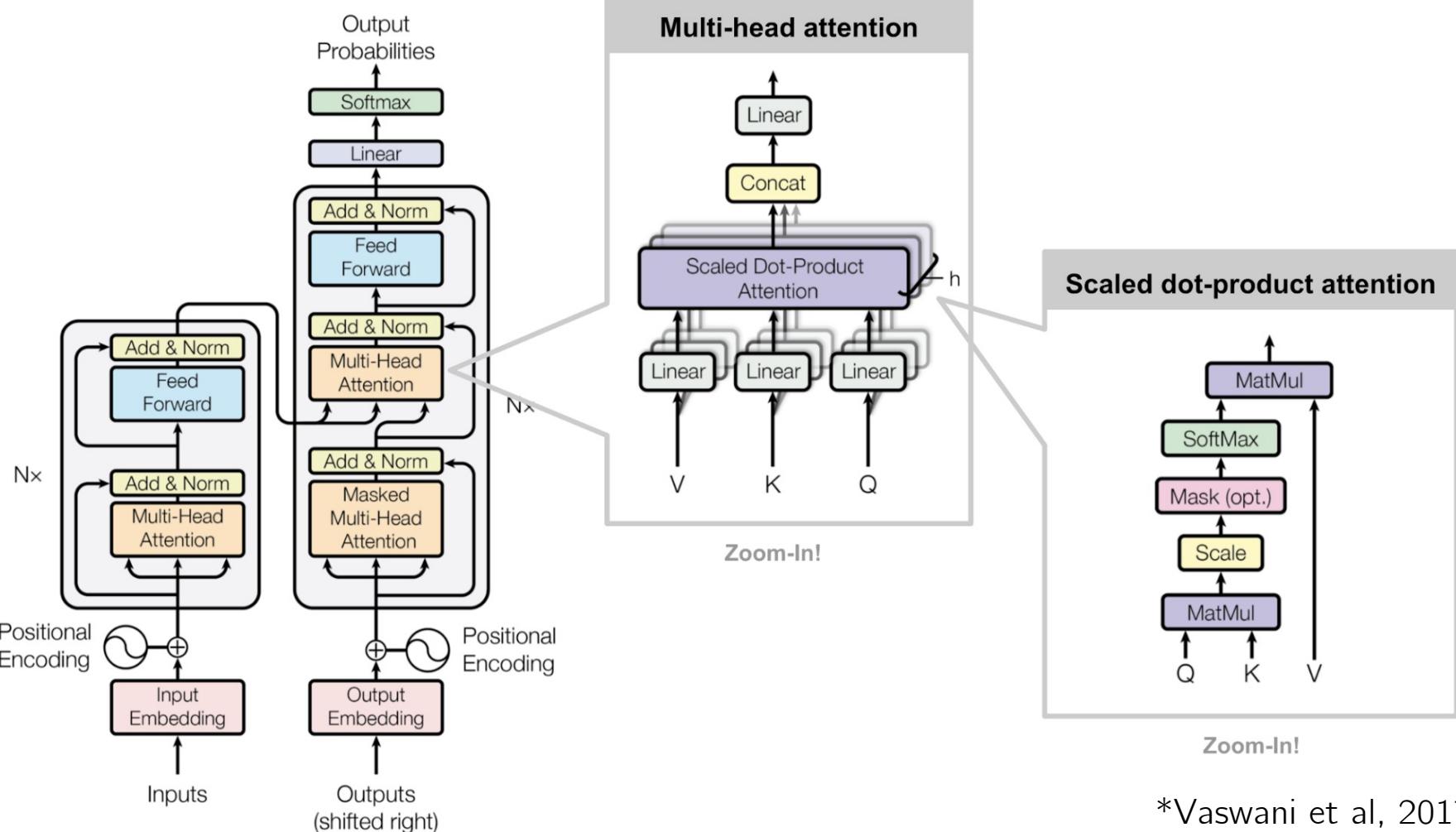
Attention Mechanisms



- Features A
- Features B

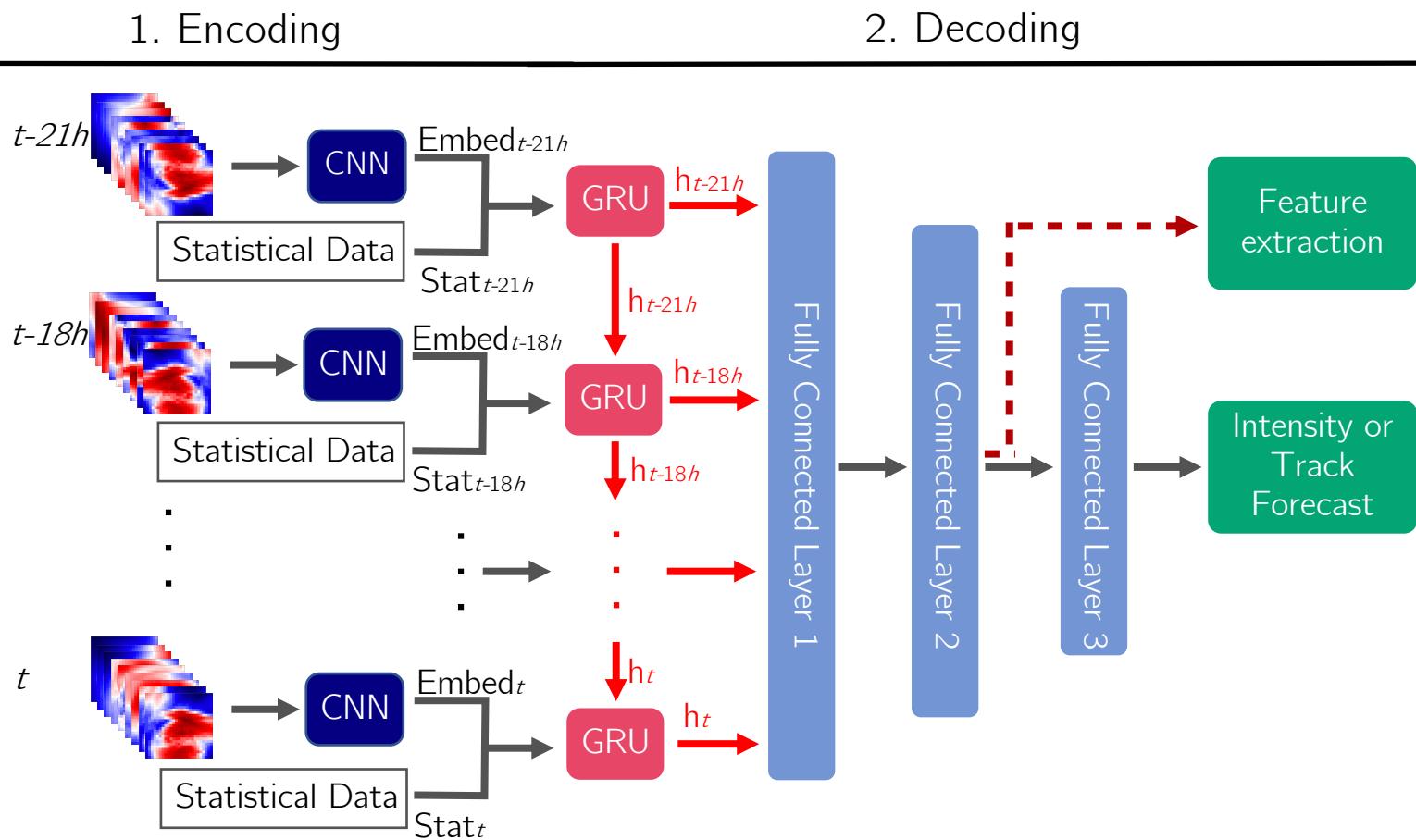
Disclaimer: this is a very schematic representation of what happens in reality

Transformers*

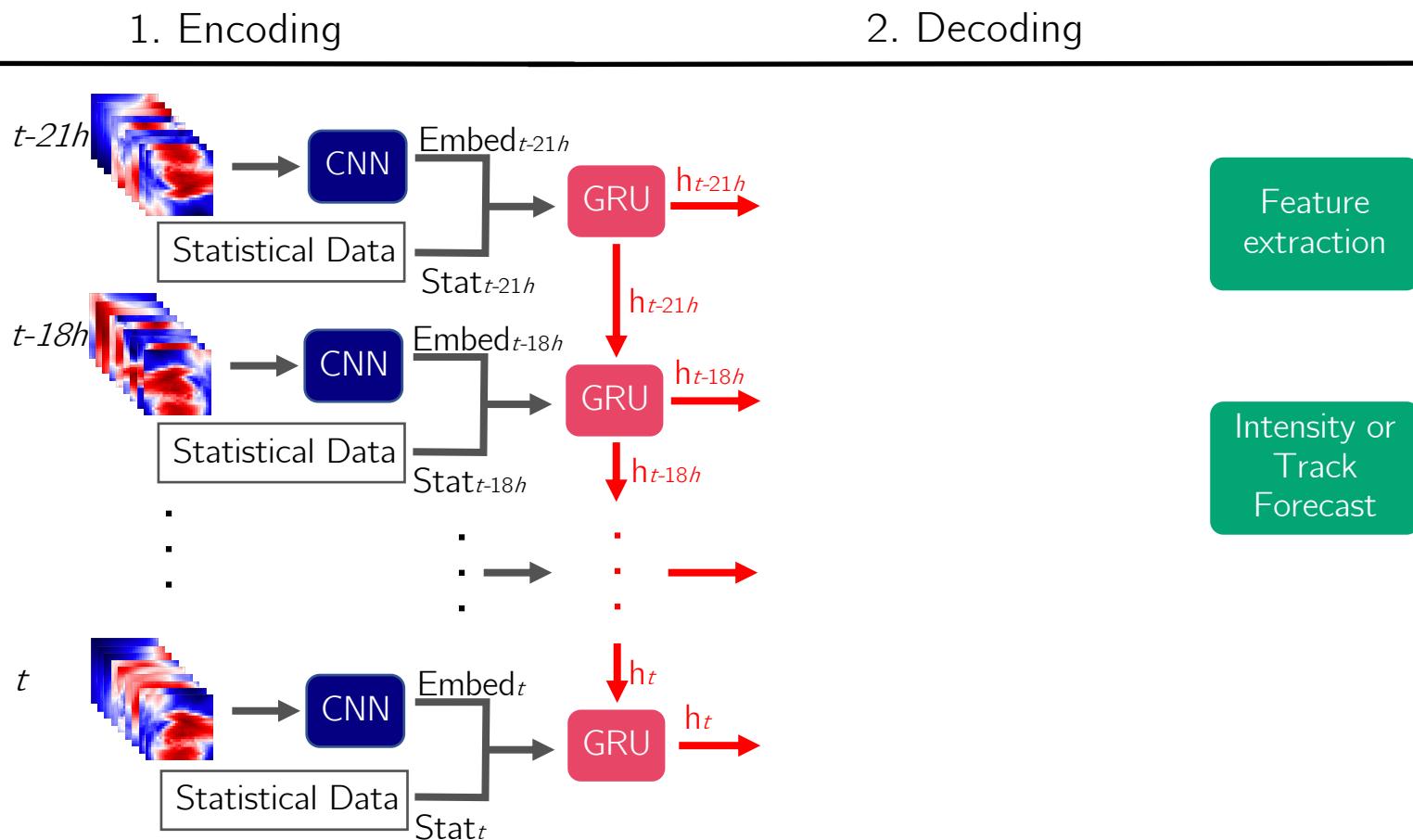


*Vaswani et al, 2017

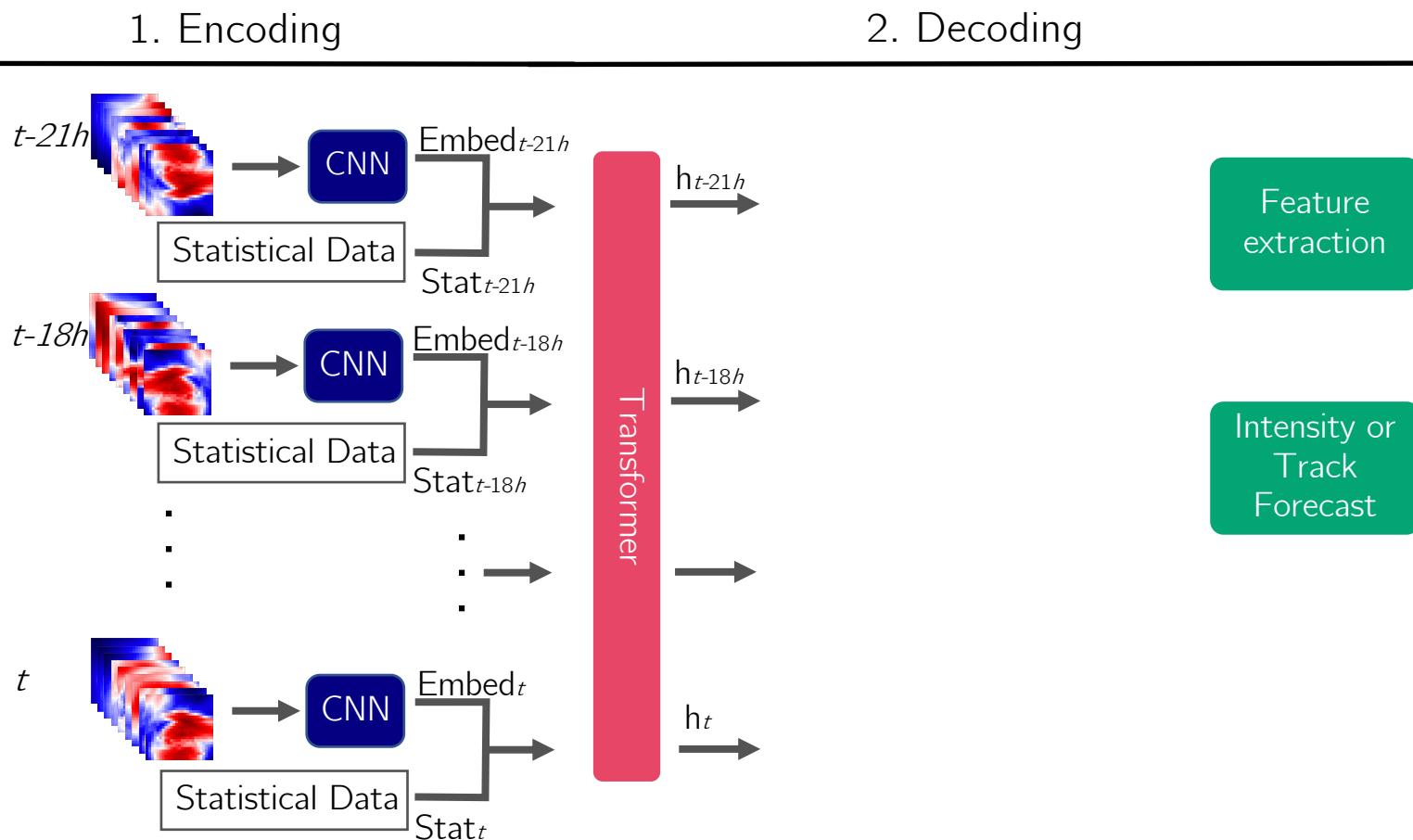
Encoder-Decoder Architecture



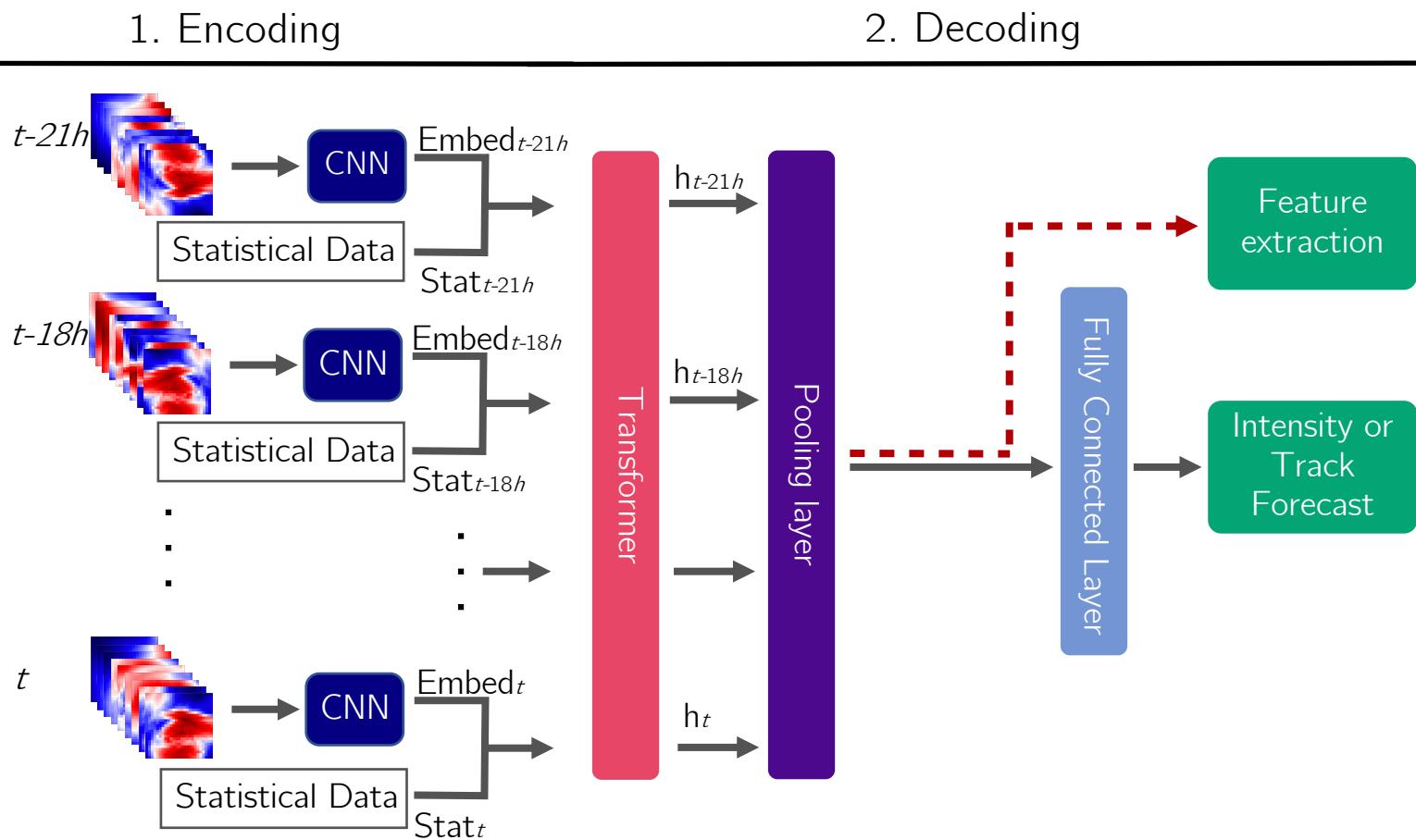
Encoder-Decoder Architecture



Encoder-Decoder Architecture



Encoder-Decoder Architecture



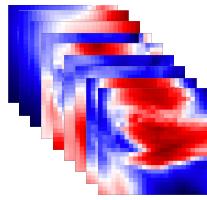
General Framework

1. Data Processing

2. Concatenation

3. Training and Forecasting

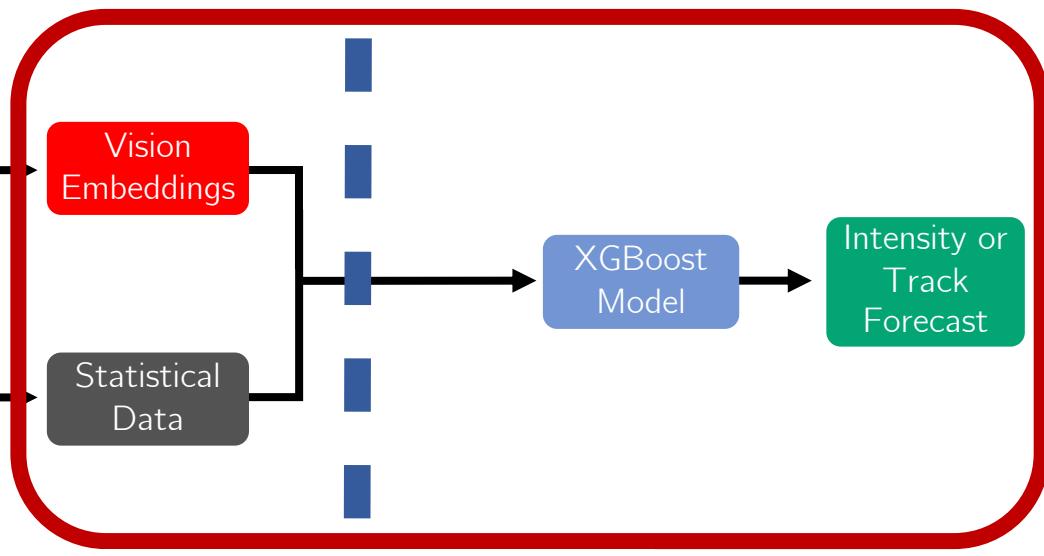
Vision Data: Reanalysis Maps



Feature extraction with deep learning

Statistical Data

	IMO PRES		
2016-01-05 06:00:00	2.0000	-173.500	25.0
2016-01-05 09:00:00	2.0450	-173.353	25.0
2016-01-05 12:00:00	2.1000	-173.200	25.0
2016-01-05 15:00:00	2.1775	-173.042	25.0
2016-01-05 18:00:00	2.3000	-172.900	25.0
			1006.0
			1006.0
			1006.0
			1005.5
			1005.0



IV. Results

Training, Validation, Testing

Data ranges from 1980 to 2020

We use a validation strategy.

Intensity results

Model Type	Model Name	Eastern Pacific Basin		North Atlantic Basin	
		Comparison on 36 TC		Comparison on 45 TC	
		MAE (kn)	Error sd (kn)	MAE (kn)	Error sd (kn)
Huricast (HURR) Methods	HURR-(viz, cnn/gru)	10.7	10.1	11.4	9.6
	HURR-(viz, cnn/transfo)	10.5	10.0	11.4	9.5
	HURR-(stat, xgb)	10.5	10.4	10.8	9.3
	HURR-(stat/viz, xgb/cnn/gru)	10.3	10.1	10.8	9.3
	HURR-(stat/viz, xgb/cnn/transfo)	10.3	9.8	10.4	8.8

- Combining data sources has a significant edge.
- Using XGBoost on top of Deep Learning-extracted features has a clear edge.
- Transformer slightly better than GRU.

Intensity results

Model Type	Model Name	Eastern Pacific Basin		North Atlantic Basin	
		Comparison on 36 TC		Comparison on 45 TC	
		MAE (kn)	Error sd (kn)	MAE (kn)	Error sd (kn)
Huricast (HURR) Methods	HURR-(viz, cnn/gru)	10.7	10.1	11.4	9.6
	HURR-(viz, cnn/transfo)	10.5	10.0	11.4	9.5
	HURR-(stat, xgb)	10.5	10.4	10.8	9.3
	HURR-(stat/viz, xgb/cnn/gru)	10.3	10.1	10.8	9.3
	HURR-(stat/viz, xgb/cnn/transfo)	10.3	9.8	10.4	8.8
Standalone Operational Forecasts	Decay-SHIPS	11.7	10.4	10.2	9.3
	HWRF	10.6	11.0	9.7	9.0
	GFSO	15.7	14.7	14.2	14.1

Very competitive or better performance than the top statistical-dynamical and best dynamical models!

Track results

Model Type	Model Name	Eastern Pacific Basin		North Atlantic Basin	
		Comparison on 36 TC		Comparison on 45 TC	
		MAE (km)	Error sd (km)	MAE (km)	Error sd (km)
Huricast (HURR) Methods	HURR-(viz, cnn/gru)	73	43	114	83
	HURR-(viz, cnn/transfo)	73	44	110	71
	HURR-(stat, xgb)	81	47	144	109
	HURR-(stat/viz, xgb/cnn/gru)	71	43	110	79
	HURR-(stat/viz, xgb/cnn/transfo)	72	43	110	72

- Combining data sources has a significant edge.
- Using XGBoost on top of Deep Learning-extracted features is useful.
- GRU and Transformer approaches perform similarly.

Track results

Model Type	Model Name	Eastern Pacific Basin		North Atlantic Basin	
		Comparison on 36 TC		Comparison on 45 TC	
		MAE (km)	Error sd (km)	MAE (km)	Error sd (km)
Huricast (HURR) Methods	HURR-(viz, cnn/gru)	73	43	114	83
	HURR-(viz, cnn/transfo)	73	44	110	71
	HURR-(stat, xgb)	81	47	144	109
	HURR-(stat/viz, xgb/cnn/gru)	71	43	110	79
	HURR-(stat/viz, xgb/cnn/transfo)	72	43	110	72
Standalone Operational Forecasts	CLP5	121	67	201	149
	HWRF	67	42	75	49
	GFSO	65	45	71	54

Performance getting **close to the top operational forecast** models.

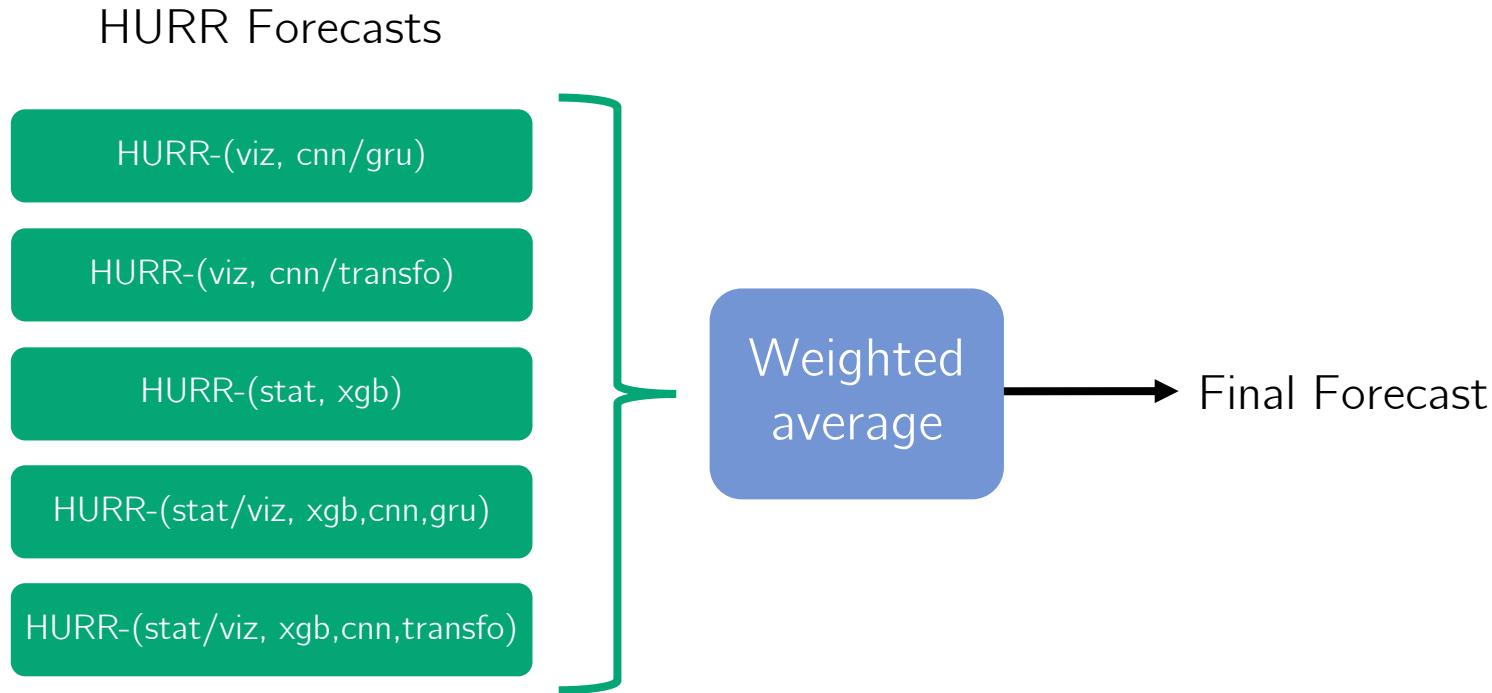
Track results

Model Type	Model Name	Eastern Pacific Basin		North Atlantic Basin	
		Comparison on 36 TC		Comparison on 45 TC	
		MAE (km)	Error sd (km)	MAE (km)	Error sd (km)
Huricast (HURR) Methods	HURR-(viz, cnn/gru)	73	43	114	83
	HURR-(viz, cnn/transfo)	73	44	110	71
	HURR-(stat, xgb)	81	47	144	109
	HURR-(stat/viz, xgb/cnn/gru)	71	43	110	79
	HURR-(stat/viz, xgb/cnn/transfo)	72	43	110	72
Standalone Operational Forecasts	CLP5	121	67	201	149
	HWRF	67	42	75	49
	GFSO	65	45	71	54

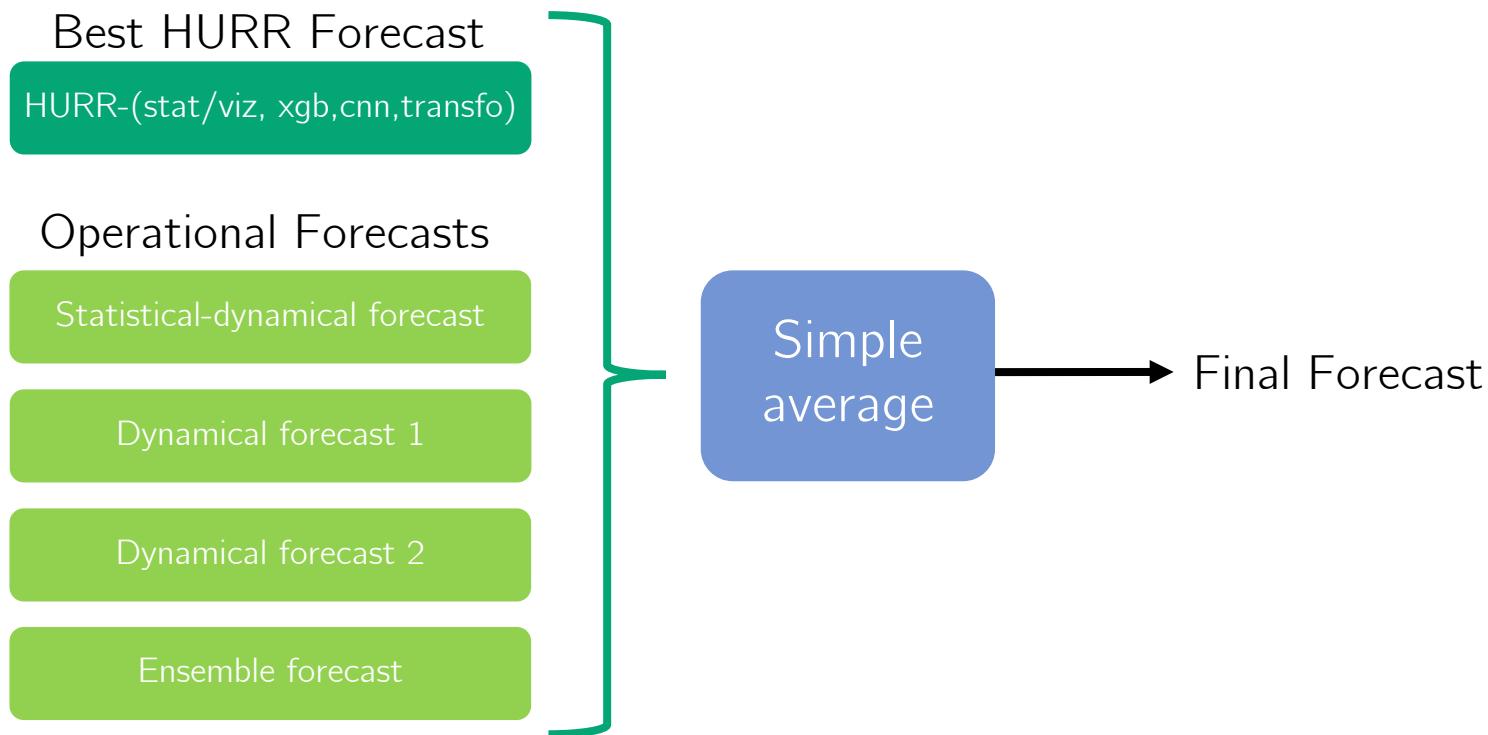
We have many models, let's ensemble them!

V. Ensemble models

Hurricast ensemble



HurriCast + Operational forecasts average



Intensity Results

Model Type	Model Name	Eastern Pacific Basin		North Atlantic Basin	
		Comparison on 36 TC		Comparison on 45 TC	
		MAE (kn)	Error sd (kn)	MAE (kn)	Error sd (kn)
Hurricast (HURR) Methods	HURR-(stat/viz, xgb/cnn/transfo)	10.3	9.8	10.4	8.8
	HURR-consensus	10.2	9.9	10.2	8.9
Operational Forecasts	FSSE	9.7	9.5	8.5	7.8
	OFCL	10.0	10.1	8.5	8.1
Consensus Models	Average consensus op. forecast	9.6	9.7	8.5	7.9
	HURR/OP-average consensus	9.2	9.0	8.3	7.6

- Ensembling our models improves performance.
- Including HURR into a simple operational forecast consensus is beneficial.

Track Results

Model Type	Model Name	Eastern Pacific Basin		North Atlantic Basin	
		Comparison on 36 TC		Comparison on 45 TC	
		MAE (km)	Error sd (km)	MAE (km)	Error sd (km)
Huricast (HURR) methods	HURR-(stat/viz, xgb/cnn/transfo)	72	43	110	72
	HURR-consensus	68	41	107	77
Operational Forecasts	AEMN	60	37	73	55
	FSSE	56	47	69	53
	OFCL	54	33	71	56
Consensus Models	Average consensus op. forecast	55	37	64	48
	HURR/OP-average consensus	50	32	61	43

- Ensembling our models **improves performance**.
- Including HURR into a simple operational forecast consensus is **beneficial**.

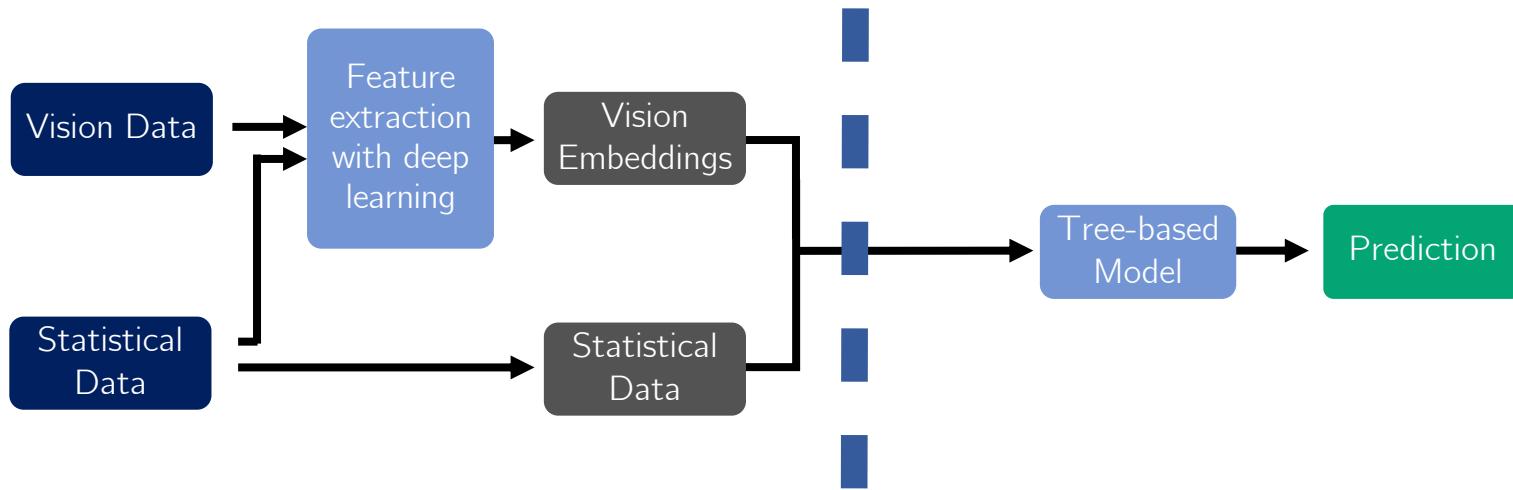
VI. Exciting applications

Other applications of the framework

1. Data Processing

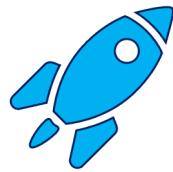
2. Concatenation

3. Training and Forecasting



Satellite data holds a lot of potential

Conclusion



Multimodality and ensemble models are powerful!

Machine Learning can advance hurricane forecasting.

Significant potential of feature extraction techniques combined with tree-based models.

Thank you for your attention!

Hurricane Forecasting: A Novel Multimodal Machine Learning Framework

Léonard Boussioux and Cynthia Zeng
Joint work with Dimitris Bertsimas and Théo Guénais

<https://arxiv.org/abs/2011.06125>

