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Abstract

Many climate change applications rely on accurate forecasts of power grid emis-
sions, but many forecasting methods can be expensive, sensitive to input errors, or
lacking in domain knowledge. Motivated by initial experiments using deep learning
and power system modeling techniques, we propose a method that combines the
strengths of both of these approaches to forecast hourly day-ahead MEFs for the
PIM region of the United States.

1 Introduction

From demand response to electric vehicle charging, many decarbonization strategies rely on an
understanding of how clean the electricity from the power grid is at any given time. In particular, the
emissions intensity of the power grid varies from moment to moment depending on which generators
are producing power, which in turn depends on factors such as the amount of electricity demand
and the amount of renewable energy available. There has therefore been a great deal of interest in
characterizing both the average and marginal emissions intensities of the power grid, which capture
the emissions associated with different sets of generators producing power at any given time [1H3].

In this proposal, we consider the challenge of forecasting marginal emissions factors (MEFs), which
describe the emissions associated with marginal generators (i.e., generators that would respond to
small changes in demand at a given time). MEFs are important for a variety of climate-relevant
applications, such as optimizing industrial or residential equipment, smart electric vehicle charging,
or the design of emissions-cognizant electricity prices [4]. Prior work has aimed to develop real-time
estimates and forecasts of MEFs using dispatch models [} 6], flow tracing [7]], and machine learning
[8]. However, full power system models can be expensive to run, cheaper “reduced form” power
models can be extremely sensitive to errors in their inputs, and purely machine learning-based
methods can suffer from failures related to a lack of domain knowledge.

In this work, we propose to forecast marginal emissions factors in a way that leverages the strengths
of both machine learning and (reduced-form) power system models. This is motivated by our initial
explorations, which found that naively forecasting MEFs using a neural network or a simple dispatch
model suffered from several limitations. We describe this initial exploration as well as our proposed
method, which involves incorporating differentiable power system models within neural networks.

2 Problem Statement

We seek to develop day-ahead hourly forecasts of CO, MEFs in the Mid-Atlantic region power pool
(PIM), which is the largest competitive wholesale market in the United States. To do so, we plan to
employ a combination of weather data from the National Oceanic and Atmospheric Administrationm
market data from PJM and dispatch models that simulate power system operations (e.g., [9]).

'See https://www.ncei.noaa.gov/data/global-hourly.
’See http://dataminer2.pjm. com.
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Forecast Method RMSE

Persistence baseline 190.84

Neural network baseline 212.25

Dispatch with forecasted inputs baseline  213.69
Table 1: Results of our initial investigation (reported on test data from September-December 2017).
We find that neither baseline we consider performs better than a (prescient) persistence baseline that
predicts the average MEF over the time period considered.

We plan to assess the quality of our forecasts based on their accuracy with respect to the ground truth.
However, we first acknowledge two important limitations of this metric. One limitation is that there is
a lack of ground truth data on MEFs, which has led to a fair amount of work characterizing historical
marginal emissions factors via methods such as regression [3}[10-13]]; in our initial approach, we plan
to compare accuracy with respect to a proxy “ground truth” simulated using a reduced-order dispatch
model (e.g., [9]), while acknowledging that these labels may be flawed. Another limitation is that
accuracy is not fully reflective of the goals of our method, as we would ideally instead measure the
extent to which our factors actually help reduce emissions (see, e.g, [[14]); however, as these factors
may be used for many different purposes, we felt that accuracy was the best “generic” metric to use.

2.1 Initial Investigation

In our initial investigation, we constructed MEF forecasts using two methods: an end-to-end neural
network forecasting method, and a method forecasting inputs to a reduced-order dispatch model. Both
models were trained on data from January 2016 to August 2017, and tested on data from September
to December 2017. We now describe these aspects in more detail.

Ground truth. Due to a lack of actual ground-truth data, we generate “ground truth” MEFs by
running the reduced-order dispatch model [9] on historical data. This model is open-source and
can produce point estimates of MEFs on an hourly basis (whereas historical regression analysis
techniques can only compute factors for clusters of hours). We had also considered calculating MEFs
directly from historical data from the EPAE] by dividing the change in emissions by the change in
fossil demand; however, this method led to a large number of outliers due to the outsized impact of
small changes in hourly generation or emissions, leading us to rely on simulated factors instead.

Neural network baseline. Using this “ground truth” data, we trained a neural network via supervised
learning to generate MEF forecasts. Our features included factors impacting power plant heat rates
and fossil fuel power demand in PJM, which are major factors influencing MEFs. Specifically, we
inputted the next day’s electricity load forecast, the last week’s nuclear generation, the next day’s
weather forecasts (air temperature, dew point temperature, sky ceiling height, wind speed, sea level
pressure)ﬂ and yearly sinusoidal features. As shown in Table |l{and Figure |1} this method fails to
capture fluctuations in MEFs throughout the day, instead predicting an MEF closer to the mean.

Dispatch with forecasted inputs baseline. Our second method involved using a neural network to
forecast inputs to the reduced-order dispatch model, and then running the dispatch model to generate
MEF estimates. In particular, this model takes (forecasts of) total fossil fuel power generation as input.
To estimate fossil generation, we trained a neural network using weather data to predict the hourly
sum of solar, wind, and hydro generation over the next day. We then subtracted this forecast as well
as the previous week’s average nuclear generation from PJM’s load forecasts. As shown in Table
and Figure[I] while this approach captures the fluctuations in the MEF, there is a large variation in
the accuracy of the forecasts at different hours of the day. Due to the nature of the dispatch model, a
small error in the fossil demand forecast can lead to a different power plant that is “on the margin” at
that hour, resulting in large errors in the predicted MEF value.

2.2 Proposed Direction

Our investigation underscores the importance of more deeply combining traditional machine learning
approaches with power system modeling approaches when developing MEF forecasts. In particular,

3 Available at https://ampd . epa.gov/ampd/,
*As we did not have access to historical weather forecasts, we instead simulated weather forecasts by adding
random noise to actual weather data (assuming that weather forecasting errors are normally distributed error.
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Figure 1: Representative results for our initial investigation.

we believe that it is important to develop methods that mitigate the input sensitivity associated with
reduced-form dispatch models, but continue to incorporate domain knowledge that can help capture
information such as the wide fluctuations of MEFs.

Our proposal is thus as follows: We propose to forecast fossil fuel generation using a neural network
and pass this forecast through a reduced-order dispatch model (as in the dispatch-based approach
above). However, instead of training the neural network to optimize for the accuracy of its fossil
generation forecasts, we will instead train the neural network to optimize for the accuracy of its
MEF forecasts (as in the neural network-based approach above). Formally, let Ny : X — R?* be a
neural network parameterized by 6 that maps from features to hourly day-ahead fossil fuel generation
forecasts, and d : R?* — R2* be a reduced-order dispatch model that maps from fossil generation to
hourly marginal emissions factors. For training inputs = € X, ground truth labels y € R?*, and some
loss function ¢, we then propose to train our neural network to optimize

miniamizeﬂ(d(Ng(x)),y). (D

MEF predictions for future hours (i.e., on the test set) would then be given by § = d(Ny(z)). The
potential advantage of this framework is that it incorporates knowledge from reduced-order dispatch
models (potentially enabling it to capture MEF fluctuations) while employing direct supervision
on the MEF outputs (which ideally will mitigate input sensitivity issues by incentivizing the neural
network to avoid mistakes that induce large errors in the output of the dispatch model).

While in concept simple, optimizing this model via gradient descent requires differentiating through
all components of the loss, including the dispatch model d. Luckily, we can leverage recent advances
in differentiable optimization layers (see, e.g., [15 [L6]) for this purpose. In particular, we plan
to employ a dispatch model that is amenable to implicit differentiation techniques, such as the
differentiable economic dispatch or optimal power flow models described in previous work [[14}[17].

3 Conclusion

We propose a method for estimating day-ahead CO, MEFs in the PIM region, in order to inform
power system interventions such as demand response, electric vehicle charging, or market design.
There are currently websites that publish historical MEF assessments from regression- and simulation-
based models, which have been used by various entities for applications such as power system
optimization and the procurement of renewable energylﬂ Once developed, we hope our MEF forecasts
can be posted publicly alongside these historical assessments to aid decision-makers as they design
interventions that reduce greenhouse gas emissions.

>For instance, see https://cedm.shinyapps.io/MarginalFactors/,
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