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Abstract

Deep learning-based models have recently outperformed state-of-the-art seasonal
forecasting models, such as for predicting El Niño-Southern Oscillation (ENSO).
However, current deep learning models are based on convolutional neural networks
which are difficult to interpret and can fail to model large-scale atmospheric patterns
called teleconnections. Hence, we propose the application of spatiotemporal Graph
Neural Networks (GNN) to forecast ENSO at long lead times, finer granularity
and improved predictive skill than current state-of-the-art methods. The explicit
modeling of information flow via edges may also allow for more interpretable
forecasts. Preliminary results are promising and outperform state-of-the art systems
for projections 1 and 3 months ahead.

1 Introduction

Figure 1: We propose spatiotemporal Graph Neural Networks (GNNs) to forecast ENSO. GNNs can better exploit
large-scale, spatiotemporal patterns indicative of ENSO than CNNs, which are based on local convolutions.
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El Niño–Southern Oscillation (ENSO) is an irregularly recurring phenomenon involving fluctuating
temperatures—the alternation of warm El Niño and cold La Niña conditions—in the tropical Pacific
Ocean. It is a major driver of climate variability, causes disasters such as floods, droughts and
heavy rains in various regions of the world [1; 2; 3; 4; 5; 6; 7] and has implications for agriculture
[8; 9; 10] and public health [11; 12; 13; 14]. Worldwide teleconnections, i.e. interlinked, large-scale
phenomena, as well as the high variability regarding its manifestations have kept long-term ENSO
forecasts at traditionally low skill .

While previous studies indicate that more frequent, long-term or variable El Niño conditions may
result due to global warming from greenhouse gases [15; 16; 17; 18], the extent of influence climate
change will have on ENSO is yet unknown and still debated given its complexity [19; 20; 21; 22; 23].
This work proposes the first application of graph neural networks to seasonal forecasting and shows
initial results that outperform existing dynamical and deep learning ENSO models for 1 and 3 lead
months.

2 Related Works
The forecasting methods in use can be broadly classified into dynamical and statistical systems
[22; 24; 25]. The former are based on physical processes/climate models (e.g. atmosphere–ocean
coupled models), while the latter are data-driven (including ML based approaches).

Machine Learning for ENSO forecasting Recently, deep learning was successfully used to
forecast ENSO 1 yr ahead [26] as well as with a lead time of up to 1.5 yrs [27], thus out-performing
state-of-the-art dynamical methods. Both project the Oceanic Niño Index (ONI) for various lead
times. The former only use the ONI index time series as input of a temporal Convolutional Neural
Network (CNN), while the latter feed sea surface temperature (SST) and heat content anomaly maps
data to a CNN. Most statistical methods can only predict the single-valued index, an averaged metric
over SST anomalies that does not convey more zonal information. A notable exception, makes use of
an encoder-decoder approach [28]. An overview over other machine learning methods used to project
ENSO, is given in [29].

Climate networks In climate networks [30], which stem from the field of complex networks,
each grid cell of a climate dataset is considered as a network node and edges between pairs of
nodes are set up using some similarity measure . They have been used to detect and characterize
SST teleconnections [31] and to successfully project ENSO 1 yr prior [32]. The latter exploits the
observation that, a year before an ENSO event, a large-scale cooperative mode seems to link the
equatorial Pacific corridor (“El Niño basin”) and the rest of the Pacific ocean.

Graph neural networks In the past years, GNNs have surged as a popular sub-area of research
within machine learning [33]. Interestingly, they have scarcely been used in earth and atmospheric
sciences—a few applications using them for earthquake source detection [34], power outage prediction
[35] and wind-farm power estimation [36]. GNNs have just recently been extended to spatiotemporal
settings, with a focus on traffic forecasting [37; 38; 39; 40].

Our GNN approach to ENSO forecasting builds on the climate network’s precedent of describing
climate as a network of nodes related by non-local connections. Based on this precedent and the
recent success of GNNs for spatiotemporal tasks, it is expected that spatiotemporal GNNs will be
able to learn the large-scale dependencies in between climate nodes and accurately model the inherent
complexity of the ENSO phenomenon. We are currently extending a state-of-the-art spatiotemporal
GNN architecture [37], that does not require pre-defined edges and supports multi-step forecasting,
to the domain of ENSO forecasting.

3 Data
ENSO depends on and affects different environmental factors. Amongst these are sea-level pressure,
zonal and meridional components of the surface wind, sea surface temperature, surface air temperature
[21]. The climate variable, time series datasets of interest for this research are:

• NOAA ERSSTv5 [41], with SST data recorded since 1854, that we have used for our
preliminary experiments (we train on 1871-1973 and test on the 1984-2020 period)
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• Coupled Model Intercomparison Project phase5 (CMIP5) [42] historical simulations
recorded since 1861, that are particularly interesting for pre-training the model since only
few observational data are available

• Simple Ocean Data Assimilation (SODA) [43] , reanalysis data recorded from 1870-2010

• Global Ocean Data Assimilation System (GODAS) [44] reanalysis data (since 1980).

The last three datasets are open-source in the processed form they were used by [27] for pre-training,
training and testing, respectively. The suitability of these datasets to deep learning methods has been
demonstrated by [27]. Preliminary analysis will focus on these datasets, but more datasets may be
incorporated to include other relevant variables, such as sea-level pressure and surface wind.

4 Proposed model

Graph Neural Networks (GNN) generalize the notion of locality that is exploited by Convolutional
Neural Networks (CNN), allowing us to model arbitrarily complex connections that are paramount
for long-term forecasts of phenomena like ENSO, where relations are non-Euclidean. Importantly,
CNNs assume translation equivariance of the input [45]. For seasonal forecasts, however, spatially
shared representations for the globe do not seem adequate, since it does matter where exactly a
certain phenomenon or pattern occurs (e.g. at a teleconnection versus at a distant, unrelated part of
the world). Additionally, GNNs are more efficient than recurrent neural networks and LSTMs [40],
which are often used in ENSO forecasting models [28; 46].

Climate datasets are often gridded, therefore, the grid cells (i.e. geographical locations) can be
naturally mapped to the nodes of a GNN. The graph’s edges, which model the flow of information
between nodes, are the main argument in favor of a GNN approach. Edges can be chosen based on
mid- and long-range climate dependencies (e.g. based on domain expertise or on edges analyzed in
climate networks research), or they can be inferred by the GNN using recent graph structure learning
approaches [37]. The explicit modeling of interdependencies based on domain expertise, or the
GNN’s choice of meaningful edges (e.g. well known patterns or teleconnections), greatly enhances
the model’s interpretability.

Moreover, most statistical methods only forecast the single-valued index and not the zonal sea surface
temperature (SST) anomalies (which can be used for, e.g., ENSO type classification [22] and a more
informed forecast). A GNN can naturally overcome these limitations by forecasting the target variable
at the nodes—which correspond to geographical regions—of interest (in our case the SST anomalies
in the ONI region). The multiple spatiotemporal GNN architectures that have been recently proposed
seem particularly well suited as a starting point [37; 38; 39; 40]. A high-level visualization of our
approach is illustrated in Fig. 1.

5 Preliminary results
The presence of an ENSO event is commonly measured via the running mean over k months of sea
surface temperature anomalies (SSTA) over the Oceanic Niño Index (ONI, k = 3) region (5N-5S,
120-170W), also known as the Niño3.4 index region (k = 5).

Table 1: Correlation skill for n lead months

Model n = 1 n = 3 n = 6

CNN [27] ≈ 0.94 0.8742 0.7616
GNN (ours) 0.9867 0.8936 0.6776

Preliminary work using SSTAs computed from the
ERSSTv5 dataset as input to the spatiotemporal
GNN proposed in [37], shows promising results in
predicting the ONI index for up to 6mon ahead
forecasts (Table 1).
We use the SST anomalies within the ONI region
over 3mon, and a simple architecture with only two
layers and no pre-defined edges. Longer lead times were not yet satisfying, which we expect to be
caused by 1) the small dataset (1233 data points in the training set), which we hope to overcome by
using transfer learning like [27]; 2) while SST anomalies are good short-term predictors of ENSO,
long-term ENSO projections usually rely on other variables such as heat content anomalies, which
we aim to incorporate in our model.

3



6 Discussion and Future Works
An improved model could have a significant impact on global seasonal climate prediction, due to
ENSOs teleconnections. Leveraged as a tool by climate researchers, longer lead-time predictions
would provide more time to determine the potential impact of the phenomenon. These lead-times
would allow those in the various impacted areas to prepare for and adapt to the predicted climate and
its effects on industry, agriculture, safety, and human quality of life.

In addition to helping populations impacted by ENSO, a successful deployment of a GNN architecture
for ENSO forecasting would show its suitability to non-linear and complex earth and atmospheric
modeling in general, such as projection of other oscillations or weather forecasting.

Finally, future work might explore using ENSO indicators as predictors in the GNN, forecasting
ENSO’s impacts (such as precipitation) across the globe due to teleconnections.
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