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Abstract

Earth observation offers new insight into anthropogenic changes to nature, and how
these changes are effecting (and are effected by) the built environment and the real
economy. With the global availability of medium-resolution (10-30m) synthetic
aperature radar (SAR) Sentinel-1 and multispectral Sentinel-2 imagery, machine
learning can be employed to offer these insights at scale, unbiased to company-
and country-level reporting. In this proposal, we document the development of an
extensible corpus of labelled and unlabelled Sentinel-1 and Sentinel-2 imagery for
the purposes of sensor fusion research. We make a large corpus and supporting code
publicly available. We propose our own experiment design for the development
of DeepSentinel, a general-purpose semantic embedding model. Our aspiration
is to provide pretrained models for transfer learning applications, significantly
accelerating the impact of machine learning-enhanced earth observation on climate
change mitigation.

1 Earth observation for climate change mitigation

Satellite-based earth observation plays a central role in measuring climate change impacts and risks
[5]. Medium-resolution satellites (10-30m spatial resolution), despite being initially designed for
environmental monitoring, are being increasingly used in applications focusing on the interface
between the environment and the real economy for the purposes of financial risk measurement:
estimating carbon dioxide emissions[11], methane emissions[32], and localising large fixed-capital
assets[18]. For the purposes of assessing financial risk due to climate change, these satellites provide
the globally exhaustive and unbiased view required by financial decision makers. Deploying analysis
at this global scale can only be accomplished with the use of machine learning.
These climate change risk applications are impaired by two perennial challenges with satellite-
based earth observation: the presence of atmospheric interference, and a shortage of training labels.
Atmospheric interference is not equally distributed around our planet. Excessive cloud cover makes
surface retrievals using multispectral imagery very challenging in certain geographies, negating its
otherwise ‘exhaustive‘ coverage. Many cloudy geographies are in the global south, precisely where
populations are the most vulnerable to climate change and where conventional reported data is the
most sparse. These same geographies are where financial institutions in the global north concentrate
their risk exposure to generate outsize returns, and are where civil society groups must be most
vigilant to identify and respond to neocolonial practises by these same institutions.
The shortage of training labels for machine learning with earth observation data is well documented.
Land use and land cover data is available with moderate spatial and temporal resolution in Europe
(e.g. the Copernicus Corine Land Cover[27]) and the US (e.g. the USDA Cropland Data Layer [28]),
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Figure 1: DeepSentinel summary, showing pretraining and fine-tuning curriculum and the variety of
use case applications.

however data for the rest of the planet are sparse (e.g. OpenStreetMaps [23]). These datasets include
only broad categories of land use and land cover, and are not fit for the purpose of localising specific
categories of industrial infrastructure. Financial institutions just beginning to reckon with geospatial
data, leaving a large gap in existence and availability of spatially-localised asset-level data.[4]
We propose a general-purpose sensor fusion semantic embedding model to overcome these dual
challenges of atmospheric interference and label availability. DeepSentinel will use sensor fusion of
SAR Sentinel-1 data and multispectral Sentinel-2 data to provide latent space embeddings of surface
conditions even in excessively cloudy conditions. Self-supervised pretraining followed by fine tuning
on land-use and land-cover data will create a general purpose embedding model suitable for a wide
range of downstream applications using transfer learning, see Figure 1. This proposal describes the
current state-of-the-art in sensor fusion, our progress towards a data corpus for training purposes, and
our proposed experiment design for delivering DeepSentinel.

2 Sensor fusion

SAR imagery carries complementary information to multispectral imagery and so is useful beyond
its penetration of atmospheric conditions. Sentinel-1 SAR C-band backscatter is sensitive to moisture
and surface types, and so has found applications in both natural environments (e.g. with classification
of forests[26] and crop types[22, 29, 21]), and the built human environment (e.g. road classification
[35]). These properties are complimentary to the multispectral data provided by Sentinel-2, which
has sensors designed to detect aerosols, water vapour, chlorophyll, and visual spectra.
Sensor fusion describes the complementary combination of data from multiple sources to improve
inference quality beyond what would be possible from either sensor individually. Fusion of Sentinel-1
and Sentinel-2 imagery has been studied for cloud removal[7, 12, 2, 19], synthetic imagery generation
[14, 3, 9], and land cover classification [31, 8, 30].
With the exception of [19], most of these studies obtain a limited corpus for a specific area of interest.
With DeepSentinel, we propose a general-purpose encoder than can be used for any land-surface
area-of-interest on the planet, and fine-tuned for any of the applications above. Relative to [19], we
propose a training dataset more than 6x larger, and made ‘production-ready’, i.e. using best-available
atmosphere-corrected data, see Table 1. Our goal is to unlock increasingly niche applications where
limited training data is available, allowing a proliferation of earth observation use cases with impact
analogous to the release of pre-trained conventional imagery convolutional neural networks of the
mid-2010s (e.g. ResNet, VGG-16/19, etc).

3 DeepSentinel - Data preparation

We prepare two novel datasets for the development of DeepSentinel. The first dataset is prepared
without labels for the purpose of self-supervised pretraining. We obtain random sample patches
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Table 1: Sensor Fusion Datasets

Dataset (Study) Components* Pixels Resolution Geography

DeepSentinel labelled
(ours, proposed)

S1 (VV+VH) + S2 (L2A - all
bands) + CCLC + OSM

6,554 Mpx 10m EU27+GB

SEN12MS-CR (Mer-
aner et al. 2020)

S1 (VV+VH) + S2 (L1C - all
bands)

10,323 Mpx 10m Global

DeepSentinel unlabelled
(ours, proposed)

S1 (VV+VH) + S2 (L2A - all
bands)

65,536 Mpx 10m Global

* S1: Sentinel-1; S2: Sentinel-2; CCLC: Copernicus CORINE Land Cover; OSM: OpenStreetMaps; L1C: Level
1-C; L2A: Level 2-A

from the planet’s land surface area. The square patches are sampled at a pixel resolution of 10m
with 250-pixel side length. Patches are obtained for both Sentinel-1 and -2, only where the image
acquisition dates are within 3 days of each other. For Sentinel-2, we sample all 13 multispectral
bands. For Sentinel-1, we sample VV and VH polarisation bands of interferometric wide swath
(IW) retrievals, the retrieval mode used over land. For maximum reproduceability and impact, we
obtain samples for all patches using both Google Earth Engine[10] and Descartes Labs computation
platform[1]. Sentinel-2 acquisitions from Google Earth Engine are provided at ‘Level 2A’ surface
reflectance level, from Descartes Labs they are obtained at ‘surface-level’ using Descartes Labs
proprietary atmosphere correction algorithm. Sentinel-1 acquisitions from Google Earth Engine have
been thermal noise corrected, radiometrically calibrated, and terrain corrected. Sentinel-1 acquisitions
from Descartes Labs have been similarly terrain corrected.
The second dataset is prepared with labels for the purposes of fine-tuning and cross-validation. Land
use and land cover labels are obtained from the 2018 Copernicus CORINE Land Cover inventory,
rasterised at 10m, as well as OSM Point, Line, and Polygon datasets. For the second dataset, samples
are only obtained for European Union (plus the United Kingdom) where Copernicus CORINE Land
Cover data are available and OSM data is of substantially higher quality. The two datasets are made
publicly available via Google Cloud Storage and Microsoft Azure Storage. Two demonstration
datasets have been prepared for the NeurIPS Climate Change AI workshop: a 10,000 sample dataset
without labels, and a 1,000 sample dataset with CORINE and OSM land use and land cover labels.2
The code for sampling the earth observation, land cover, and OSM data is available via Github. 3 We
propose to scale up our two novel datasets to 1,000,000 and 100,000 samples respectively, which
would make them the two of the largest datasets of their kind, see Table 1.

4 DeepSentinel - Proposed experimentation

With DeepSentinel, we seek to produce semantically-meaningful feature embeddings from either or
both Sentinel-1 and -2 imagery. In this proposal, we seek feedback on our experiment design from
the NeurIPS 2020 Climate Change AI workshop. Our success with DeepSentinel will depend on two
main design decisions: our choice of embedding architecture, and our training curriculum.
For our embedding architecture, we will seek an optimal architecture learning from the experiences
of the computer vision research community. Embedding architectures for experimentation include
ResNet[13], UNet[25], and DenseNet[15] variants, HRNet[34], and context-based attention encoders
[33]. For our training curriculum, we propose to use our large unlabelled data corpus in a self-
supervised learning implementation. Many self-supervised learning algorithms are available that may
be appropriate for DeepSentinel. We will experiment with a range of methods: contrastive learning[6],
anchor-neighbour-distant triplet loss[16], auto-encoders [17], and adversarial network variants (e.g.
cGAN[20], ALEA[24]). The challenge with self-supervision methods is the development of an
evaluation criteria suitable for our target use case. This is why we have created our second labelled
dataset. Using 70% of this dataset, we will fine-tune the encoder using labelled data, and use fine-tuned
performance to cross-validate and optimise the performance of our self-supervised pretraining method.
We will experiment with patch multi-class classification, object detection, and semantic segmentation
tasks on OpenStreetMap labels using conventional weighted log loss and intersection-over-union as

2Datasets are accessible at https://console.cloud.google.com/storage/browser/deepsentinel
3DeepSentinel code is available at https://github.com/Lkruitwagen/deepsentinel.git and the

OSM server at https://github.com/Lkruitwagen/deepsentinel-osm.git
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evaluation criteria. Finally, with the remaining 30% of the data, we will test the generalisability of
the feature embeddings on new land use and land cover classes previously unknown to the model.
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