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Abstract

Prescribed burns are currently the most effective method of reducing the risk of
widespread wildfires, but a largely missing component in forest management is
knowing which fuels one can safely burn to minimize exposure to toxic smoke.
Here we show how machine learning, such as spectral clustering and manifold learn-
ing, can provide interpretable representations and powerful tools for differentiating
between smoke types, hence providing forest managers with vital information on ef-
fective strategies to reduce climate-induced wildfires while minimizing production
of harmful smoke.

1 Introduction

As evident from the past decade, wildfires in the western US are becoming larger, deadlier, and more
frequent due to worsening climate conditions, causing phenomenons such as recurring droughts, heat
waves, and earlier springs [3;[115[19]. In an effort to reduce wildfire risk, state and local governments
are pushing to manage forests via regular prescribed burning, i.e., controlled, low-temperature burns
to reduce the amount of fuel in a forest. Although prescribed burning conducted every few years will
reduce wildfire risk due to climate change, populations near heavily forested areas will experience
frequent smoke episodes. Previous research has observed that smoke produced from different burn
conditions or from burning different fuels, such as whole trees and man-made structures in wildfires
versus ground cover duff in prescribed burns, is chemically distinct [[1; 9]]. Specifically, we have
previously demonstrated that burning a specific shrub, manzanita, can release enormous amounts of a
toxic compound known as hydroquinone into the air [10]. Other smoke compounds that describe
a specific fuel or burn condition may exist but there is currently no technique that can extract this
information from the complex chemical composition. Consequently, current air quality models
treat all smoke as composed of about ten common compounds (i.e., produced from burning any
vegetation) and overlooks differences between thousands of other compounds [20]. The lack of more
fuel-specific smoke information prevents forest managers from developing an effective strategy to
reduce climate-induced wildfire risk while minimizing air quality damage.

A first step toward understanding the impact of wildland burns, including wildfires and prescribed
burns, on air quality is through chemical fingerprinting — laboratory analysis to quantify compounds
in collected smoke samples from wildland burns. The output from advanced analytic platforms, such
as two-dimensional gas chromatography (GC) and mass spectrometry (MS), is multi-dimensional and
contains thousands of chemical compounds [5]. Comparing smoke samples and relating fingerprint
data to their impacts on air quality, and subsequent exposure toxicity, is also an inherently difficult task
because of complex synergism between numerous compounds and the variability in burn conditions.
There is an urgent need for machine learning techniques that can differentiate between different
types of smoke with interpretable and explainable results. We do not want to limit ourselves to
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only answering whether two smoke samples are different, but we aim at gaining insight as to how
differences (if observed and statistically significant) relate to groups of compounds. In this way we
can link smoke to fuel, burn conditions, and air quality impacts.

In this work, we describe how spectral clustering and manifold learning can provide interpretable
representations and powerful tools for differentiating between smoke. The statistical challenge is that
the data (such as mass spectra representing chemical compounds) are not only high-dimensional, but
that each smoke sample is a weighted set of high-dimensional data. Furthermore, not all mass spectra
are equally likely to occur; the underlying physical constraints naturally imply that the spectra, if
seen as points in a higher-dimensional space, inherently possess “sparse” low-dimensional structure
(clusters, manifolds, etc). The main question is how to design efficient representations and machine
learning (ML) algorithms for smoke samples that take sparse structure into account, and that allow us
to easily relate ML prediction results back to groups of chemical compounds. Here we present a new
geometry-based metric between smokes as distributions over chemical compounds, which can serve
as input to kernel ML and visualization algorithms.

2 Data

Our research team collected a total of 54 prescribed burn smoke samples at ground level and above the
forest canopy (~100 m in the air). Burns were conducted at Blodgett Forest Research Station (BFRS,
Georgetown, CA) in 2017. Additional ~100 smoke samples will be collected during prescribed burns
at BFRS in Nov. 2020. These field samples represent unknown fuel composite samples as we only
know the approximate fuel composition prior to the prescribed burn. We will also conduct laboratory
burns of fuels harvested from BFRS in order to separate chemical fingerprints of smoke produced
from single and multicomponent fuel mixtures.

Smoke samples are analyzed using two-dimensional GC-MS with online derivatization [9]]. This
instrument separates compounds within smoke particles by first separating molecules by their boiling
point and then by their polarity before detection via electron ionization with a time-of-flight mass
spectrometer. A compound is described by its retention time for boiling point (i.e., the time needed to
travel through the first GC column), retention time for polarity, and mass spectrum. Approximately
1000 unique compounds were separated and quantified in each smoke sample. We define the chemical
fingerprint of a smoke sample as a weighted set of compounds S = {(x1, Wx, )s - -, (Xm, Wx,, ) }»
where X1, ...,%X,, € RP represent m ~ 1000 chemical compounds in the sample as measured by
MS, GC, or both, with dimension p ~ 500; the weights wx, , ..., wx,, € [0,1] with Y" | wy, =1
represent emission intensities or mass concentrations (mg/ m3).

3 Interpretable Insights on Smoke via Geometry-Based Metrics

Aim 1: Building interpretable metrics that differentiate between smoke via manifold learning

Although the data x € R? (for, e.g., mass spectra of chemical compounds) are high-dimensional,
they have low intrinsic dimensionality due to physical constraints in the system. How do we build
interpretable metrics that reflect this structure with scalable ML algorithms for computing distances
between smoke samples? The toy example in Figure[]illustrates our proposed approach for comparing

Figure 1: Toy example to il-
lustrate Aim 1. In (a), we de-
fine a codebook for chemical
compounds via spectral cluster-
ing. Panel (b), bottom left, il-
lustrates that a distance metric
that does not utilize data geome-
try will place histogram represen-
tations f, g, and h of smoke sam-
ples at equal distance, whereas the
arrangement to the bottom right
(implied by GDD) better reflects
that f is closer to g than to h.




and analyzing sets of such high-dimensional data. Panel (a) shows data lying near a low-dimensional
manifold. Via spectral clustering, using the diffusion K-means algorithm [13], we quantize the
compound space according to geometric structure to create a common “codebook” with centroids A,
B, and C. The natural geometry of the data suggests that points near A are closer to points near B
than those around C. Panel (b), top, shows three histograms, f, g and h, for distributions over these
centroids. The bottom left triangle illustrates how any metric that does not take data geometry into
account views the location of the three histograms on a two-dimensional simplex; each of the bins
corresponds to a vertex on an equilateral triangle. The arrangement of the bins and the histograms in
the bottom right triangle better reflects the interbin relationships.

Our proposed method takes geometry into account by placing the bins (code words) in a Euclidean
space defined by a diffusion map. The diffusion map is a rescaled Laplacian eigenmap [2], x € RP
U(x) = (¥1(x), Y2(X), ..., Pa(x)) € RY, where vy, . .., 14 are the first d eigenvectors (ordered by
their eigenvalues) of a positive semi-definite “kernel”; in our settings, this kernel could for example
be a (renormalized) Gaussian kernel based on cosine distances [[18] between chemical compounds. In
the diffusion framework, the rescaling is defined such that the Euclidean distance ||¥(x;) — ¥(x;)||
between any two compounds ¢ and j in the map reflects the intrinsic connectivity structure of the data,
defined by a Markov random walk (MRW) over the underlying (low-dimensional) data structure. The
details of the construction are given in [[L3]]; similar ideas can also be found in [4;114] . The value of
having an explicit diffusion metric is that it offers a principled way of linking spectral clustering and
manifold learning to data compression and visualization.

Contribution. In this work, we extend the diffusion metric between high-dimensional data (chemical
compounds) to a generalized diffusion distance (GDD) between weighted sets of such data (smoke
samples). Let f = {f1,..., fx} and g = {g1, ..., gx } be the histogram representations of any two

fingerprints, say S and S, where the bin locations are defined by the diffusion K-means centers
{c;}K | with K ~ 100. One can show that the GDD between histograms can be computed very

efficiently as GDD(S, §) = HZfil (fi —gi)ci H thus with linear complexity O(K). In comparison,

another common set metric such as the Earth Mover Distance (EMD)[16]] has a typical algorithmic
complexity of O(K?® log K) and also does not take the intrinsic geometry of the data distribution into
account. Finally, one can show (in prep) that in the limit of X — m (or no binning), a version of
the GDD converges to the well-known Maximum Mean Discrepancy (MMD) [6]]. The latter result
can be used to determine the amount of compression (or the smallest K') that would give maximum
interpretability, computational efficiency and low variance without sacrificing significant accuracy
(or bias) relative to MMD.

Aim 2: Differentiating between smoke via kernel machine learning and statistical tests

GDD can serve as input to kernel-based machine learning algorithms [7; [17] for regression and
classification of different types of smoke. Our BFRS data include smoke samples collected at air
versus ground level. Smoke from the first category escapes the tree line and is more likely to affect
communities living near a prescribed burn. Our proposed framework allows us to distinguish between
the two different types of smoke, as well as quantify the composition of the smoke most likely to
affect regional air quality. In addition to probabilistic classification, we propose a principled method
of identifying whether differences in smoke samples are statistically significant. For the latter task,
we will either employ the local regression test [12] based on a kernel logistic regression [21]] with
GDD, or alternatively, test for differences within each of the K partitions via a binomial test 8 [15].

Aim 3: Mapping back to compound space to visualize and explain results

Figure [2illustrates our methodology on our initial BFRS samples. Once we have defined a common
codebook for chemical compounds and represented each chemical fingerprint of smoke as a histogram
over the code words (orange markers), we can visualize the smoke samples in diffusion space as
points in the convex hull of the K “words”. This inverse map back to compound space provides

'The original diffusion distances D(x;, x;) between compounds i and j correspond to the transition proba-
bilities of a MRW on a graph with the compounds as nodes and the edge weights given by a suitable similarity
matrix; the above metric between individual compounds induces a new metric GDD(S, S ) between weighted
sets S = {(X1,Wx, ), -+ -, (Xm, W, )} and S = {(X1, wg, ), . .., Xom, wx,.. )}, where generally m # m.



2] Figure 2: Diffusion map of 54
smoke samples from prescribed
burns at BFRS. Each sample (blue
circles for air; green triangles for
ground) is represented as a convex
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insight as to how differences in smoke type (if observed and statistically significant) relate to groups
of compounds. After understanding which fuels, burn conditions, and groups of compounds result in
certain negative outcomes like poor health or air quality, we will work with forest managers at BFRS
and CAL FIRE to develop a forest management plan that reduces climate-induced wildfire risk while
minimizing impacts on the regional environment.
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