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Abstract

Harmful algal blooms in drinking water supply and at recreational sites endanger
human health. Excessive algal growth can result in low oxygen environments,
making them uninhabitable for fish and other aquatic life. Harmful algae and
algal blooms are predicted to increase in frequency and extent due to the warming
climate, but microbial dynamics remain difficult to predict. Existing satellite
remote sensing monitoring technologies are ill-equipped to discriminate harmful
algae, while models do not adequately capture the complex controls on algal
populations. This proposal explores the potential for Bayesian neural networks
to detect phytoplankton pigments from hyperspectral remote sensing reflectance
retrievals. Once developed, such a model could enable hyperspectral remote
sensing retrievals to support decision making in water resource management as
more advanced ocean color satellites are launched in the coming decade. While
uncertainty quantification motivates the proposed use of Bayesian models, the
interpretation of these uncertainties in an operational context must be carefully
considered.

1 Introduction

Coastal waters support fisheries, which provide livelihoods and recreation for nearby communities.
Reservoirs and lakes are major sources of drinking water. These aquatic systems are increasingly
experiencing anthropogenic stresses from population growth and land development, along with longer
term shifts in temperature from a changing climate. These water bodies are full of microscopic life,
which serve as the primary producers for aquatic ecosystems and mediate biogeochemical processes.
Over past decades, rising temperatures and increasing pollution have been linked to ecosystem shifts
such as higher occurrences of harmful algal blooms (1) and low-oxygen waters caused by excessive
algal growth (2). Harmful algae release toxins that can cause illness and even death when ingested
directly or indirectly through shellfish poisoning. Low oxygen waters are uninhabitable to fish and
other benthos, resulting in massive fish kills.

Due to the ecological importance of aquatic microbes, oceanographers have deployed advanced
technologies to monitor and study their population dynamics. Polar-orbiting ocean color satellites
provide observations of the world’s oceans every few days. Geostationary ocean color satellites
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Figure 1: Harmful algal bloom at a drinking water intake in Lake Eerie. (Photo Credit epa.gov)

examine one region of the earth, providing multiple observations per hour. These satellites have
historically carried multi-spectral spectrometers, which senses the Earth’s radiance at a several
discrete wavelengths from the ultraviolet to near infrared. Both types of sensors have been employed
for monitoring harmful algae (3) and phytoplankton dynamics (4), but are limited by their coarse
spectral resolution. The future generation of United States’ ocean color sensors being developed will
provide imagery at much greater spectral resolution, as the PACE (Plankton, Aerosol, Cloud, ocean
Ecosystem) and GLIMR (Geosynchronous Littoral Imaging and Monitoring Radiometer) missions
become operational in the coming decade.

Existing algorithms for remote sensing of the environment typically employ a two-step approach
that seeks to first (1) remove the atmospheric interference between the sensor and the target and then
(2) derive the geophysical parameter of interest from the atmosphere-corrected retrieval. In aquatic
remote sensing, algorithms for atmospheric correction and parameter retrieval are largely derived
from open ocean studies. However, these algorithms perform poorly in coastal and inland waters due
to the complex mixtures of materials in the water and air (e.g. sediment, dissolved organic material,
aerosols) specific to near-shore environments. Poor performance and the lack of a widely accepted
uncertainty quantification have limited their use for decision making in water resource management.
The improved spectral resolution of future ocean color sensors are promising hardware advances,
but must be accompanied by advances in retrieval algorithms suitable for the increase in information
available.

2 Methods

2.1 Model Description & Training Data

We propose the application Bayesian Neural Networks for monitoring microbial communities with
hyperspectral sensors to support water resource management. Bayesian methodologies have been
shown to improve accuracy in atmospheric correction (5) and in deriving biogeochemical information
(6) for existing ocean color sensors over traditional algorithms. The appeal of the Bayesian approach
for this problem is the ability to model the expectation and covariance of the posterior distribution,
providing a measure of uncertainty for retrievals. In both (5; 6), models were applied to a discrete
set of wavelengths to match existing ocean color sensors, although the training and validation
data are available at higher spectral resolution. Within this Bayesian framework, we propose the
implementation of neural networks due to the high dimensionality of the input space associated with
hyperspectral imagery.

Specifically, the model proposed is a Bayesian neural network for predicting phytoplankton pigment
concentrations [mg m~3] from remote sensing reflectance (R,s(\) [sr~!]). Field deployments of
in situ spectroradiometers have traditionally been used to validate satellite sensors and atmospheric
correction algorithms. Many of these measurements have been accompanied by coincident measure-
ments of phytoplankton pigments, which are widely used as indicators of phytoplankton species in
the aquatic environment. Harmful algae often shift the color of a water body when they are in full
bloom, reflecting the unique pigment signatures associated with these organisms.


https://www.epa.gov/water-research/harmful-algal-blooms-drinking-water-treatment
https://pace.gsfc.nasa.gov/
https://eospso.nasa.gov/missions/geosynchronous-littoral-imaging-and-monitoring-radiometer-evi-5

Data to train this model will draw from decades of ocean color measurements curated in NASA’s
SeaBASS database. Potential test datasets for this model include hyperspectral imaging studies in
regions where harmful algal blooms cause recurring challenges to drinking water (Lake Eerie) or
recreation (Gulf of Mexico). Additionally, regions within view of the South Korean Geostationary
Ocean Color Imager (GOCI) are applicable for studying sub-daily scale coastal phytoplankton
dynamics (e.g. KORUS-OC Campaign).

2.2 Data Pre-Processing

Machine learning based dimensionality reduction and data compression methods aid in the inter-
pretation of images from hyperspectral sensors, which exhibit much higher resolution than their
multispectral predecessors. Our proposed work builds on previous research that successfully derived
phytoplankton proxies from hyperspectral radiometry using empirical orthogonal function (EOF)
analysis to discriminate optical signals that are not apparent in higher dimensional space (7; 8).
Pre-processing remote sensing reflectances by normalization and EOF analysis captures key modes
of variability in the spectra, which were found to be leading predictors of an optical proxy of the
phytoplankton community in (6).
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Figure 2: In situ remote sensing reflectance spectra (N=49) from the KORUS-OC Campaign. Data
can be accessed via doi:10.5067/SeaBASS/KORUS/DATAQ01. EOF analysis in Appendix.

3 Broader Impact: Model Deployment and Decision Support

Recurring blooms of the cyanobacteria Microcystis in Lake Eerie can contaminate drinking water,
while Karenia brevis blooms in Florida can cause shellfish poisoning and widespread fish mortality.
These events are difficult to predict due to the myriad of environmental and biological controls on
algal dynamics. As the frequency of harmful algal blooms (HABs) is predicted to increase with
climate change, water resource managers are faced with the challenge of anticipating and monitoring
for harmful levels of toxins. However, monitoring water quality is resource intensive, requiring
frequent in-person water sample collection and analysis. The work in this proposal seeks to employ a
combination of Bayesian and neural network approaches on hyperspectral imagery to aid decision
support for closures and enable predictive modeling for HABs.

3.1 MLOps for water resource management

The model proposed for accurately detecting phytoplankton pigments in imagery alone will not
address climate change related challenges for water resource management. The operational pipeline
best suited for an application should be deployed based on the time scale and spatial extent of interest.
For example, policy decisions related to land use change considered concurrently with climate
stressors (e.g. (9; 10; 1)) or the contribution of coastal aquatic ecosystems for carbon sequestration
(11) will require data in batches for intermittent studies and evaluation. Alternatively, a streaming or
real-time deployment framework would be more appropriate for advisories. For example, a decision


https://seabass.gsfc.nasa.gov/
https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/airSatelliteMon.html
https://coastalscience.noaa.gov/research/stressor-impacts-mitigation/ecohab/
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https://www.nasa.gov/feature/goddard/2016/nasa-s-korus-oc-campaign-takes-to-seas
https://seabass.gsfc.nasa.gov/cruise/kr_2016

support tool for toxin and algal concentrations might be designed to ingest live monitoring streams
from sensors to and satellites to send an alert when modeled toxin concentrations exceed management
thresholds (e.g. microcystin concentration exceeding 0.3 ug/L triggers a drinking water advisory for
young children, 1.6 ug/L for adults). Such an implementation framework might employ multiple
machine learning models in the pipeline, ingesting multiple data streams and delivering actionable
information to decision makers. While the uncertainty quantification motivates our proposed use of
Bayesian models, our future work includes contemplation of the propagation of prior uncertainties
through a neural network, and its appropriate interpretation in an operational context.
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4 Appendix

4.1 Supplementary Figures
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Figure 3: First 4 principal components from EOF analysis of remote sensing reflectances in Fig. 2.

4.2 Data and Code

Data from Fig. 2 can be accessed at https://seabass.gsfc.nasa.gov/cruise/kr_2016. Data
cleanup and analysis available on Databricks community cloud, here.
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https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/467083698547762/4309043897584536/4378404200469168/latest.html
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