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Abstract

Tropical cyclone (TC) intensity forecasts are ultimately issued by human forecasters. The human
in-the-loop pipeline requires that any forecasting guidance must be easily digestible by TC
experts if it is to be adopted at operational centers like the National Hurricane Center. Our
proposed framework leverages deep learning to provide forecasters with something neither end-
to-end prediction models nor traditional intensity guidance does: a powerful tool for monitoring
high-dimensional time series of key physically relevant predictors and the means to understand
how the predictors relate to one another and to short-term intensity changes.

1 Introduction

Tropical cyclones (TCs) are powerful, highly organized storm systems that help transfer energy from the upper
levels of the world’s oceans to the atmosphere. Increasing coastal populations, concurrent with rising ocean
temperatures due to climate change, increase the dangers (such as storm surge and damaging winds) posed by TCs.
Thus, accurate prediction of TC trajectories and intensities becomes an ever more critical component of disaster
preparation and response. Track forecasting has made great strides since the 1990s, but intensity forecasting,
especially in the short-term 12-h and 24-h windows, have seen less pronounced improvements [, [3]. Cases of rapid
intensity change (30-knot intensity changes in 24 hours), in particular, have proved difficult to predict [13 [14} 28]

TC prediction and science rely in part on the relationships between the external environment, internal structure,
and behavior of these storms. For example, vertical wind shear (an external factor) and TC convective patterns
(an internal factor) are both known to relate to TC intensities [0, [14} [12]. Forecasters can access a wide array of
real-time TC observations of both types, but new public forecasts must be issued every six hours by expert human
forecasters. This human-in-the-loop pipeline requires that any forecasting guidance must be easily understood
by TC experts. If the output of a method cannot be digested by scientists in a handful of minutes, it will not be
adopted by stakeholders at operational centers such as the National Hurricane Center (NHC).

The NHC and other operational forecast centers use both physics-based models (dynamical models) and data-
driven models (statistical models) [3]]. The Statistical Hurricane Intensity Prediction Scheme (SHIPS [4]) is a
particularly successful statistical-dynamical model which largely relates area averages of environmental fields (such
as vertical wind shear) and cloud-top temperatures from infrared (IR) imagery to future TC intensity change. This
IR imagery is available at high spatial and temporal resolutions from satellites like the Geostationary Operational
Environmental Satellites (GOES'|[26}[16]]). Structure in IR imagery has long been known to relate to TC intensity
(see the Dvorak technique [6}[20]]), but the area-averaged values commonly used in statistical models discard critical
spatial information. The evolution of spatial structure in such fields correlates with intensity change, but unlocking
this rich source of information in IR imagery without sacrificing interpretability remains an open problem.

We propose a framework to incorporate evolving spatial information into intensity forecasts by utilizing deep
learning (DL) in the high-dimensional time series setting while remaining cognizant of the needs of the end users:
forecasters and scientists. While our end goal is the prediction of short-term intensity changes, our framework
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will offer something neither end-to-end models (black-box prediction of intensity directly from IR imagery) nor
existing operational forecasts can: structural summaries or interpretable quantification of the convective structure
of TCs in the form of one-dimensional functions, together with structural forecasts of the dynamic evolution of
these summaries. This new setup will provide forecasters with a powerful tool for monitoring high-dimensional
time series of key physically relevant predictors (like the eye-eyewall structure and symmetry of deep convection
relative to the TC center) with the means to understanding how the predictors relate to one another and to TC
intensity change.

Figure [T] describes our approach. In this figure, the top row indicates observed information, while the bottom
row indicates forecasts; the final intensity forecast (bottom-right) depends on the past intensity (top-right) and
a “structural forecast” (bottom-center) — the predicted short-term evolution of TC structure itself. We obtain
structural forecasts via two paths (A and B). Each approach extracts a set of interpretable functions and uses DL to
propagate the structural state of the TC into the near future. These parallel pathways allow forecasters to check
the structural forecasts for agreement via quantitative error metrics in addition to checking them for physical
plausibility directly examining both forecasted imagery and structure. Path A evolves the original IR imagery via
DL and then computes structural functions on the forecasted imagery. Path B instead computes structural functions
first then evolves them directly via DL. Traditional end-to-end DL approaches step directly from the observed
IR imagery and intensity history to an intensity forecast; our framework’s inclusion of interpretable structural
forecasts as an intermediary step sets it apart from these traditional machine learning applications.

2 Data

Geostationary satellite observations, including the Geostationary Operational Environmental Satellites (GOES),
provide high spatial (<4 km) and temporal (<30 min) resolution imagery of the Atlantic and Pacific TC basins.
Such observations are consistently available, unlike aircraft reconnaissance or land-based instruments such as radar.
We will focus on longwave infrared (~10.7 pm), which provides estimates of cloud-top temperature. Because
temperature generally decreases with height in the troposphere, low cloud-top temperatures typically indicate
regions of stronger thunderstorms and thus deeper convection. The data collected consist of ~200,000 IR images
(~400x400 pixels) from 656 unique TCs in the North Atlantic and eastern North Pacific between 2000 and 2019.
Storm location and intensity are drawn from the NHC’s HURDAT?2 database [18].

3 Providing Insight to TCs via Deep Learning and Forecasted Structure

The ultimate goal of this work is to leverage evolving spatial structures in TCs to better understand storm behavior,
specifically short-term storm intensity change (6- to 24-hour time frame). We would like to answer the question
“Can we predict short-term intensity change using interpretable functions from GOES-IR?"

Preliminary Work. In prior work [8], we have shown that a set of interpretable structural functions drawn from
GOES-IR imagery can nowcast (that is, predict ongoing) rapid intensity changes as well as SHIPS environmental
predictors. Our approach extracted a set of ORB functions summarizing the Organization, Radial structure, and
Bulk morphology of a TC image as continuous functions (of, e.g., the radius r from the TC center or the threshold



c of level sets). The ORB functions were then compressed via a principal component analysis (PCA), and the PC
coefficients served as inputs to logistic lasso models which classified the storms as rapidly changing in intensity
or not. The (generalized) linear model allowed the user to directly relate the probability of a rapid TC intensity
change to changes in key physical predictors like the eye-eyewall structure and symmetry of deep convection in the
storm core. Our initial ORB suite performed as well as a subset of area-averaged SHIPS environmental predictors,
while the combination of the two sets outperformed SHIPS alone. For reliable intensity forecasting, however, we
need a richer suite of ORB functions, as well as a tool for projecting high-dimensional ORB functions X; € R¢
(where d is very large) into the future without a prior dimension reduction.

Structural Summaries. In the proposed work, we will develop a richer suite of structural summary functions
that also includes center-independent structural functions, measures of the spatial structure of vector fields, and
additional satellite observations such as water vapor (~ 6.5um) imagery. Crucially, we will compare our final
intensity forecasts based on these structural functions with intensity forecasts resulting from end-to-end DL models;
in this way, we can assess the richness of the feature suite and quantify information lost in compression w.r.t. the
root mean squared (RMS) intensity prediction errors. Instead of focusing on exhaustive feature design, we will
predominantly explore new classes of functions to improve the range of physical structures quantified by ORB.

Structural Forecasting. In lieu of an end-to-end deep learning model, we will project our structural summaries of
the TC 6, 12, and 24 hours into the future via DL; instead of only answering “How strong will the TC be in 6/12/24
hours?” we will also model “What will the TC look like in 6/12/24 hours?”” This approach will provide the critical
next step in the prediction pipeline, which enables forecasters to examine the structural forecast before relying on the
intensity model. Since they can compare the forecast to the original satellite imagery, this improves stakeholder trust
in the model, providing additional clues to the emergence of unrealistic TC structures or trajectories. Furthermore,
this framework mimics the utilization of numerical weather models by statistical-dynamical intensity guidance;
such models use physical laws rather than statistical learning to forecast the state of the atmosphere, but the final
intensity guidance (e.g., SHIPS) still draws on summaries of this atmospheric forecast in the same way we will
draw on a structural forecast.

We will generate structural forecasts via two pathways. The first of these (in Figure [T| pathway A) steps the
TC imagery forward in time, then computes ORB functions at each time step. This could be achieved using
convolutional neural network architectures used in frame-to-frame prediction (as in [1}[9]; see [21] for an exhaustive
review). As video prediction tasks can be challenging, a modified version of this pathway could have deep
convolutional architectures forecast intensity directly [23} |15 [10]; i.e., an end-to-end model going straight from
the top left to the bottom right of Figure[I] The second route (in Figure 1, pathway B) will directly step the ORB
functions forward in time, thus optimizing for the outcome of interest (TC structure). While linear auto-regressive
models such as ARIMA [2] are appropriate, we plan on leveraging recurrent neural networks [7]], which have been
shown to be successful in multivariate time series prediction tasks [29, 22| [17, 124] (see [19] for a recent review).
Comparing the output of pathways A and B will allow us to compare the impact of using interpretable structural
functions on the accuracy of structural forecasts against those automatically extracted by deep learning models.

From Structure to Intensity. Traditional linear models have historically been attractive to forecasters and
scientists for reasons of interpretability and good performance in low sample size settings. However, linear models
often struggle to capture the complex, time-varying processes which drive these storms. We here propose an
approach that leverages DL to handle the high-dimensional structural forecasting problem, while the relationship
between structure and intensity is handled by additive models (generalized additive models [11]], sparse additive
models [25]], etc.). Additive models are attractive due to their combination of high-capacity, ease of interpretation,
and straightforward visualizations. Importantly, these additive models have access to a structural forecast; the
heavy lifting of high-dimensional time series prediction is handled by the deep learning models. In addition to this
regression problem, comparison of trajectories via spectral clustering will be used to identify modes of evolution
[27]]. Such identification of similar trajectories in historical TCs can provide forecasters and scientists alike with
analogous TCs against which to compare the evolution of new storms.

Evaluation Metrics. We will have two quantitative metrics for the performance of this framework. First, we will
compare the resultant RMS intensity errors and bias at 6, 12, and 24 hours to both end-to-end DL and to the official
NHC forecasts for those times. Second, we will compare the Lo-distance between the resultant structural forecasts
from the two pathways (to assess “sufficiency” of tracking only ORB functions) as well as distance from the ground
truth structural functions. We acknowledge that a model based solely on satellite imagery with limited atmospheric
and oceanographic data will not outperform state-of-the-art intensity prediction schemes on its own. However, a
successful model which relates structural evolution to intensity change will be an invaluable addition to the toolbox
utilized by forecasters and scientists analyzing TCs.

Acknowledgement This work is supported in part by the NSF Al Planning Institute for Data-Driven Discovery in
Physics, NSF PHY-2020295.



References

[1] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell, and Sergey Levine. Stochastic
variational video prediction. arXiv e-prints, page arXiv:1710.11252, October 2017.

[2] George.E.P. Box and Gwilym M. Jenkins. Time Series Analysis: Forecasting and Control. Holden-Day, 1976.

[3] John P. Cangialosi, Eric Blake, Mark DeMaria, Andrew Penny, Andrew Latto, Edward Rappaport, and Vijay
Tallapragada. Recent Progress in Tropical Cyclone Intensity Forecasting at the National Hurricane Center.
Weather and Forecasting, 35(5):1913-1922, 08 2020.

[4] Mark DeMaria and John Kaplan. An updated statistical hurricane intensity prediction scheme (SHIPS) for
the Atlantic and Eastern North Pacific basins. Weather and Forecasting, 14(3):326-337, 1999.

[5] Mark DeMaria, Charles R. Sampson, John A. Knaff, and Kate D. Musgrave. Is tropical cyclone intensity
guidance improving? Bulletin of the American Meteorological Society, 95(3):387-398, 2014.

[6] Vernon F. Dvorak. Tropical cyclone intensity analysis and forecasting from satellite imagery. Monthly
Weather Review, 103(5):420-430, 1975.

[7] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179-211, 1990.

[8] Author et. al. Unlocking GOES: A statistical framework for quantifying the evolution of convective structure
in tropical cyclones. Journal of Applied Meteorology and Climatology, 2020.

[9] Jean-Yves Franceschi, Edouard Delasalles, Mickaél Chen, Sylvain Lamprier, and Patrick Gallinari. Stochastic
latent residual video prediction. Proceedings of the International Conference on Machine Learning, 2020.

[10] Sophie Giffard-Roisin, Mo Yang, Guillaume Charpiat, Christina Kumler Bonfanti, Baldzs Kagl, and Claire
Monteleoni. Tropical cyclone track forecasting using fused deep learning from aligned reanalysis data.
Frontiers in Big Data, 3:1, 2020.

[11] Trevor J Hastie and Robert J Tibshirani. Generalized additive models, volume 43. CRC press, 1990.

[12] Liang Hu, Elizabeth A Ritchie, and J Scott Tyo. Short-term tropical cyclone intensity forecasting from
satellite imagery based on the deviation angle variance technique. Weather and Forecasting, 35(1):285-298,
2020.

[13] John Kaplan, Mark DeMaria, and John A. Knaff. A revised tropical cyclone rapid intensification index for
the Atlantic and Eastern North Pacific basins. Weather and Forecasting, 25(1):220-241, 2010.

[14] John Kaplan, Christopher M Rozoff, Mark DeMaria, Charles R Sampson, James P Kossin, Christopher S
Velden, Joseph J Cione, Jason P Dunion, John A Knaff, Jun A Zhang, et al. Evaluating environmental impacts

on tropical cyclone rapid intensification predictability utilizing statistical models. Weather and Forecasting,
30(5):1374-1396, 2015.

[15] S. Kim, H. Kim, J. Lee, S. Yoon, S. E. Kahou, K. Kashinath, and M. Prabhat. Deep-hurricane-tracker:
Tracking and forecasting extreme climate events. In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1761-1769, 2019.

[16] K. R. Knapp and S. L. Wilkins. Gridded satellite (GridSat) GOES and CONUS data. Earth System Science
Data, 10(3):1417-1425, 2018.

[17] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term temporal
patterns with deep neural networks. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, SIGIR ’18, page 95-104, New York, NY, USA, 2018. Association for
Computing Machinery.

[18] Christopher W. Landsea and James L. Franklin. Atlantic hurricane database uncertainty and presentation of a
new database format. Monthly Weather Review, 141(10):3576-3592, 2013.

[19] Bryan Lim and Stefan Zohren. Time series forecasting with deep learning: A survey. arXiv preprint
arXiv:2004.13408, 2020.

[20] Timothy L Olander and Christopher S Velden. The advanced dvorak technique (adt) for estimating tropical
cyclone intensity: Update and new capabilities. Weather and Forecasting, 34(4):905-922, 2019.

[21] Sergiu Oprea, Pablo Martinez-Gonzalez, Alberto Garcia-Garcia, John Alejandro Castro-Vargas, Sergio
Orts-Escolano, Jose Garcia-Rodriguez, and Antonis Argyros. A review on deep learning techniques for video
prediction. arXiv e-prints, page arXiv:2004.05214, April 2020.

[22] Yao Qin, Dongjin Song, Haifeng Cheng, Wei Cheng, Guofei Jiang, and Garrison W. Cottrell. A dual-stage
attention-based recurrent neural network for time series prediction. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence, IJICAI’ 17, page 2627-2633. AAAI Press, 2017.



[23] Evan Racah, Christopher Beckham, Tegan Maharaj, Samira Ebrahimi Kahou, Mr. Prabhat, and Chris Pal.
Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding
of extreme weather events. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 3402-3413. Curran
Associates, Inc., 2017.

[24] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and Tim
Januschowski. Deep state space models for time series forecasting. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
31, pages 7785-7794. Curran Associates, Inc., 2018.

[25] Pradeep Ravikumar, John Lafferty, Han Liu, and Larry Wasserman. Sparse additive models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 71(5):1009-1030, 2009.

[26] Timothy J Schmit, Paul Griffith, Mathew M Gunshor, Jaime M Daniels, Steven J] Goodman, and William J
Lebair. A closer look at the ABI on the GOES-R series. Bulletin of the American Meteorological Society,
98(4):681-698, 2017.

[27] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395-416, 2007.

[28] Kimberly M Wood and Elizabeth A Ritchie. A definition for rapid weakening of North Atlantic and Eastern
North Pacific tropical cyclones. Geophysical Research Letters, 42(22):10-091, 2015.

[29] Rose Yu, Stephan Zheng, Anima Anandkumar, and Yisong Yue. Long-term forecasting using higher order
tensor RNNs. arXiv e-prints, page arXiv:1711.00073, October 2017.



	Introduction
	Data
	Providing Insight to TCs via Deep Learning and Forecasted Structure

