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Abstract

Natural disasters ravage the world’s cities, valleys, and shores on a monthly basis.
Having precise and efficient mechanisms for assessing infrastructure damage is
essential to channel resources and minimize the loss of life. Using a dataset
that includes labeled pre- and post- disaster satellite imagery, we train multiple
convolutional neural networks to assess building damage on a per-building basis.
In order to investigate how to best classify building damage, we present a highly
interpretable deep-learning methodology that seeks to explicitly convey the most
useful information required to train an accurate classification model. We also
delve into which loss functions best optimize these models. Our findings include
that ordinal-cross entropy loss is the most optimal loss function to use and that
including the type of disaster that caused the damage in combination with a pre- and
post-disaster image best predicts the level of damage caused. Our research seeks
to computationally contribute to aiding in this ongoing and growing humanitarian
crisis, heightened by climate change.

1 Introduction

Natural disasters devastate countless vulnerable communities and countries annually. They are
responsible for the deaths of 60,000 people a year worldwide, on average [18]. The timely allocation
of resources in the event of these tragedies is crucial to saving lives. Additionally, natural disasters
cause varying levels of damage to buildings. The havoc wreaked by them causes widespread
infrastructure damage, in some cases leading to a "cascade effect" [15]. The resulting economic
impact is colossal. For example, since 1980, the United States has sustained 273 weather and climate
disasters that have caused damages exceeding 1 billion US dollars (USD), totaling 1.79 trillion
USD [6]. Unfortunately, the frequency and severity of these disasters will only continue to increase,
exacerbated by climate change [22]. The catastrophic impact of natural disasters and their increasing
prevalence motivates the problem addressed in this work. In order to prepare for and recover from
these terrible but inevitable events, robust emergency response plans must be in place. This requires
quickly and accurately analyzed data from the disaster site. Because it is almost always difficult to
obtain damage assessment and other details from on the ground in a timely manner, satellite imagery
has gained popularity in being used to analyze these types of situations. Deep neural networks
(DNNs) have been used to locate and classify building damage within satellite imagery [12, 11, 25, 9].
However, the current literature is limited in the interpretability of what exactly these neural networks
are learning and what is most useful in assessing building damage.

To better address this problem, we present a novel analysis of the most important information that a
deep learning model needs to assess building damage. We use a convolutional neural network (CNN)
architecture called a residual neural network (ResNet), pre-trained on Imagenet data [13]. In our
approach, we train multiple CNNs on xBD satelite imagery data [10], with different modalities of
input, as well as using different loss functions, and compare accuracy on the validation set. We aim
to explicitly provide insight into the most effective ways to train models to classify levels of building
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damage, maximizing the efficiency of the emergency response after a natural disaster, which has the
potential to save lives and reduce economic strain.

2 Related Works

Satellite imagery is useful in a plethora of areas, including for assessment of marine ecology [21],
weather forecasting [4], and even in studying and predicting the spread of infectious disease [19].
Lately, there has been increased interest in using satellite imagery for humanitarian purposes such
as responding to natural disasters [17]. Satellite imagery also provides insights for agriculture [26]
and urban road damage [16]. More generally, change detection, which is the process of identifying
differences in the state of an object by observing it at different times, can be used with satellite imagery
in a variety of contexts. There are a few primary categories in which change detection approaches fall:
algebra-based, transform-based, and classification-based [1]. Change detection has been employed on
satellite imagery to study deforestation [23], urban growth [14], and more. One specific area that has
garnered significant attention in computer vision and satellite imagery is building damage assessment.
Recent works have studied semantic building segmentation [12, 11] and cross-region transfer learning
to avoid overfitting [25]. Furthermore, [9] presents a semi-supervised approach. xView2 recently
introduces a dataset, xBD, discussed more in detail later in this work [10]. Many teams [24] competed
in the xView2 data competition and improved upon the baseline model provided [10]. In our work, we
focus on building damage assessment via image classification and change detection. We specifically
hone in on what information is most useful in accurate classifications of building damage and analyze
which loss functions are most fit for training our models and yield the most precise results. Our
primary contribution is to improve upon the interpretability of machine learning models of prior
works and existing literature in this area by explicitly examining per-building classification prediction
accuracy with different combinations of inputted information and loss functions.

3 Methods

3.1 Dataset Details

For this work, we utilize the xBD dataset [10], which covers a wide range of disasters in fifteen
countries around the world, from Guatemala to Portugal to Indonesia (over 850,736 building polygons
totaling an area of 45,361 square kilometers). One of xBD’s main purposes is to demonstrate changes
between pre-disaster and post-disaster satellite imagery to aid in detecting the damage caused.
Therefore, each post-disaster building is labeled as one of the following: "unclassified," "no damage,"
"minor damage," "major damage," or "destroyed." (We later discard the "unclassified" buildings).
The classification benchmark utilized is called the Joint Damage Scale (JDS). We use the xBD dataset
because it incorporates a variety of disaster types, building types, and geographical locations. This
allows for diversity in training the model. For example, the wide variety of geographical locations
is important for cross-region generalization. Additionally, the high resolution imagery allows for
detailed change detection between pre-disaster and post-disaster images. These factors currently
make xBD the leading dataset for building damage detection using labeled satellite imagery [10].
Previous satellite imagery datasets were not as comprehensive, and, for example, had only covered
singular disaster types or did not have uniform building damage assessment criteria like the JDS used
in xBD [8, 2, 7].

3.2 Data Preprocessing

The dataset consists of 1024 by 1024 pixel satellite images. In order to zero in on the changes we
begin by collecting bounding boxes of the buildings in each image from the segmentation ground truth
masks (building polygons) provided. We discard buildings that have a bounding box size of less than
2,000 pixels, as they are too small and blurred will not be valuable training data, possibly hindering
the model from achieving accurate results. We also discard any buildings with the classification
ground truth label of "unclassified," because this information is not useful for our purposes. In order
to maintain an equal distribution over JDS classification (damage level) in our training and validation
sets so that we can properly assess model accuracy, we provide for an equal number of buildings of
the categories "destroyed," "major damage," "minor damage," and "no damage" in each set, while still
maintaining a 0.8:0.2 ratio between train and validation. The xBD dataset is deliberately created with
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a disproportionately large volume of buildings with no damage [10], but training on such a lopsided
data distribution would yield artificially high accuracy numbers and not give valuable results.

3.3 Baseline Model

We train a baseline classification model to classify buildings by damage level, as defined by the Joint
Damage Scale. The model input is only the post-disaster image. Notably, our baseline model does
not use change detection. Because the data is labeled, this is a supervised approach. The model
architecture is ResNet18, an 18 layer CNN, and was pre-trained on ImageNet data [5]. This baseline
model uses the cross-entropy loss function, which is defined as

−
4∑

c=1

yo,c log(po,c),

where yo,c is a binary indicator (either 0 or 1) of whether c, as a label, correctly classifies observation
o, and po,c is the predicted probability that observation o is of the class c. Cross-entropy loss is
defined, in other words, as the negative sum of the expression yo,c log(po,c) across all 4 possible
classes c: no damage, minor damage, major damage, and destroyed. The network is trained on 12,800
buildings crops with a batch size of 32. The Adam optimizer with a learning rate of 0.001 is used.
The model trained for 100 epochs on NVIDIA Tesla K80 GPUs.

3.4 Improvements

We train other models that improve upon the performance of the baseline model. To do this, we
introduce other model inputs, namely the pre-disaster image (in combination with the post-disaster
image) and the type of disaster (e.g. volcano, wind, etc.) that caused the building damage. To train
a model that takes in both pre-disaster images and their corresponding post-disaster images, we
concatenate the RGB channels of the two and use that as input. To train a model that takes in the
pre-disaster image, post-disaster image, and disaster type, we do the same, but also concatenate a
one-hot encoded representation of the disaster type in one of the later layers of the CNN.

Furthermore, we experiment with other loss functions, namely mean squared error loss and ordinal
cross-entropy loss to train these models. We define mean squared error as

1

b

b∑
i=1

(y − ŷ)2,

where b is the batch size, y is the ground truth (a class from 0 to 3 representing each damage level),
and ŷ is the prediction. Ordinal cross-entropy loss differs from cross-entropy loss in the sense that it
takes into account the distance between the ground truth and the predicted class (hence "ordinal").
Since the building damage classification problem involves different and increasing levels of damage
from no damage to destruction, this function is useful to distinguish between different categories.
To implement ordinal cross-entropy loss as the loss function, we treat it as generic multi-class
classification and encode the classes no damage, minor damage, major damage, and destroyed as
[0, 0, 0], [1, 0, 0], [1, 1, 0], and [1, 1, 1], respectively [3]. The other aspects of the training process
(optimizer, learning rate, number of epochs, etc.) remain the same. These improved models contribute
to our understanding of what information leads to the most accurate prediction results for building
damage assessment.

4 Results and Discussion

In Table 1, we present model accuracy on the validation set across nine different models, which are
differentiated by three different input combinations and three different loss functions. The baseline
model, which is trained with post-disaster data only and the cross-entropy loss function, has an
accuracy of 59.5%, as shown. It is important to note that all models were trained and validated on data
that is evenly split between building crops of each class (no damage, minor damage, major damage,
and destroyed), so a purely blind guessing model would achieve approximately 25% accuracy.

When the model is trained and validated on both pre-disaster and post-disaster building imagery as
opposed to solely the post-disaster data, we see an 8.8% increase in accuracy on the validation set in
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Table 1: Comparison of Validation Accuracy on 9 Different Models
Model Accuracy on Validation Set with Chosen Loss (100 epochs)

Loss Function
Model Input Mean Squared Error Cross-Entropy Loss Ordinal Cross-Entropy Loss

Post-Disaster Image Only 45.3% 59.5% 64.2%

Pre-Disaster, Post-Disaster Images 50.2% 68.3% 71.2%

Pre-Disaster, Post-Disaster Images, Disaster Type 49.7% 72.7% 74.6%

comparison to the baseline model, while keeping the loss function constant. Adding the disaster type
as a third type of input subsequently increases accuracy by another 4.4%. Reverting to the baseline
model, changing the loss function utilized to ordinal cross-entropy loss instead of cross-entropy loss,
we see a 4.7% accuracy jump on the validation set. Sticking with ordinal cross-entropy loss, adding
the pre-disaster image as a mode of input increases accuracy by another 7.0%, while adding the
disaster type as another mode of input increases accuracy by an additional 3.4%.

Much of our results conform to our hypotheses. Firstly, accuracy on the validation set improves when
more modes of useful information are inputted into the model (accuracy generally increases moving
down the rows of Table 1). This is reasonable because the more information that the model has to
work with, the more accurate predictions it should make. A large part of our research was addressing
which types of input aid the convolutional neural networks in making accurate predictions. From the
results generated, it seems that having the aspect of change detection (when the pre-disaster image
is concatenated with the post-disaster image and inputted) is useful, along with the type of disaster.
We also note that models using ordinal cross-entropy loss as their criterion for optimization perform
the most accurately. This is also reasonable because, as previously mentioned, ordinal cross-entropy
loss is most specifically applicable for a classification problem that involves an ordinal scale (in this
case, the JDS), as opposed to categories with no intrinsic ordering. Mean squared error (MSE), not
surprisingly, showed itself to be the least effective loss function to use for training. This is justifiable
because MSE is primarily used in regression problems, not classification problems. We find that
cross-entropy loss models fall somewhere in between.

However, we note that none of the accuracy numbers are necessarily optimal. This can be explained
by the fact that the differences between categories, particularly between minor-damage and major-
damage, are often difficult to discern, for both humans and AI. This is certainly a challenge with
non-binary classification tasks with building damage that has been acknowledged by many, including
Gupta et. al [10]. Additionally, more thorough dataset cleaning may yield marginally more accurate
results. These results contribute to the research area of building damage detection by addressing the
limited interpretability of current literature in regards to what types of information are most useful to
building damage classification models as well as which loss functions are the best criterion.

5 Conclusion

The main insights that can be drawn from our work include using individualized building crops instead
of semantic segmentation to train models and performing experiments with various combinations of
model inputs and loss functions to explicitly examine their differences. Our work’s main contribution
to the field is presenting a novel, more interpretable, analysis of how to classify building damage
most accurately and effectively in the event of a natural disaster. Practically, our work and others
in the field advance methods for more robust emergency responses and more efficient allocation of
resources, which saves lives and property. This research is especially important now, when climate
change is ramping up the frequency and intensity of these devastating events.

Building on our work with improving interpretability, future work includes investigations of the
prediction performance of deep learning models with other types of input added, such as neighboring
building damage levels. Additionally, other ways to combine information such as pre-disaster and
post-disaster images (instead of a simple concatenation like we did here) with the goal of displaying
interpretability should yield valuable results.
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A Qualitative Results

Figure 1: Gradient class activation maps [20] depict which parts of the building crop lead the baseline
model to predict a certain classification. On the top are the original images (crops) and on the bottom
are the corresponding gradient class activation maps. The images included are only post-disaster
images. From left to right: (1) A building with label "no damage," after flooding in the Midwestern
United States, (2) A building with label "minor damage," after Hurricane Michael, (3) A building
with label "major damage," after Hurricane Harvey, and (4) A building with label "destroyed," after
Hurricane Michael.

7



B Additional Dataset Details

B.1 Building Size

Figure 2: A histogram representing the distribution of building bounding box areas in the xBD dataset.
Outliers (bounding boxes with a pixel area greater than 8000) have been removed from the graph.

(a) 64 pixels (b) 6232 pixels

Figure 3: A comparison of two vastly differently sized buildings in the dataset. Both are resized to
100 by 100 pixels for viewing. Clearly, the blurred building of size 64 pixels would not be a useful
data point for any deep learning model to learn from and yield accurate results. Instead, buildings
like this are noisy and are discarded in our method.
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