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Motivation: landscape topology

e We want to understand how different landscape and rural/urban
interface structures impact the potential wildfire risk, in order to provide
useful insights to trigger actions to mitigate future expected losses.

Geometrical Topological
e |dentify and exiract useful

topological features that can
be used in related models.

* Analyze the role of
connectivity, continuity,
adjacency, and dispersion of
the land cover when
predicting future wildfire risk.




Data mining

e Dataset: ~ 18,000 satellite images from
Google Earth Engine. Land cover layer
obtained from spectral analysis (30m
resolution) is fransformed into @
grayscale 32x32 geofiff file.

e Llocation: south-central Chile (212,000
km?2), corresponding to 28% of the
country which accounts for 98.5% of
the historical fire occurrence.
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e Binary label “fire”: Classification label
(1. fire positive, 0: negative) between
2013 -2015.
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Risk levels

The model is able to determine dangerous/risky topologies based on the

combination, adjacency, area covered, and discontinuities of different
land-covers in the landscape.

E.g., Dense urban areas with certain grass/trees.

Large areas of continuous flammable land covers
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Risk analysis: full dataset summary

High risk

Low diversity landscapes dominated by forest
plantation, agriculture land, and high
population density.

Medium risk

Heterogeneous landscapes characterized by a
similar proportion of the most common land
covers and low population density.

Low risk

Homogeneous landscapes dominated by native
forest and low population density
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Future work

» Global implementation results including millions of fires and
exira layers (climatic, demographic, etc.) as part of the
images or inputs of independent networks.

» Derive/evaluate meaningful and realistic actions to fransform
high risk landscapes into low risk ones.

» Deploy the open source version in GitHub and Azure services.
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