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Abstract

Increasing wildfire activity across the globe has become an urgent issue with
enormous ecological and social impacts. While there is evidence that landscape
topology affects fire growth, no study has yet reported its potential influence on fire
ignition. This study proposes a deep learning framework focused on understanding
the impact of different landscape topologies on the ignition of a wildfire and the
rationale behind these results. Our model achieves an accuracy of above 90% in fire
occurrence prediction, detection, and classification of risky areas by only exploiting
topological pattern information from 17,579 landscapes. This study reveals the
strong potential of landscape topology in wildfire occurrence prediction and its
implications for similar research. The proposed methodology can be applied to
multiple fields/studies to understand and capture the role and impact of different
topological features and their interactions.

Introduction

An open and growing challenge is the increase in wildfire occurrences across the globe because of
its enormous ecological and social impacts, along with its devastating effects on biodiversity and
greenhouse gas emissions [[14]. Recent megafires in California, Australia, Greece, Chile, Brazil, and
Portugal, among other countries, reveal the need for new approaches to understand them [16]]. In the
context of Deep Learning (DL) models in this field, models trained for fire detection [20]], wildfire
spread prediction [9]], and fire susceptibility mapping [23]] are some examples found in the literature
[11]]. The study of fire occurrence or fire risk focuses on measuring the chance that a fire might start.
Although some studies have reported that landscape topology affects fire growth [5]], no study has
reported the effect of landscape topology on fire occurrence. Previous studies have considered risk
factors derived from weather, danger indices, physiography, land-cover, or socioeconomic variables
[4], which, in general, are one-dimensional numerical or categorical variables. However, we have
not found any modeling efforts that try to capture landscape topology as a predictor of fire risk, thus
necessitating the present study.

In general, capturing topological aspects is more complex than constructing a one-dimensional
variable such as temperature, topography, and socioeconomic or landscape composition in an area
of interest. However, the spatial configuration of these elements may influence and modify fire
regimes [1]]. Land-cover data represent the basic information for landscape analysis at a pixel level of
the primary land uses in a geographically delimited territory. This two-dimensional representation
of the landscape also captures an intrinsic relationship between adjacency and connectivity of its
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components, which can be studied to understand landscape phenomena and complex patterns and
processes, thanks to the increasing availability of global data at a high and medium spatial resolution.

In this paper, we introduce deep fire topology (DFT), a comprehensive framework (available as an
open-source software) for landscape topology analysis by training a DL model while focusing on
understanding the rationale behind the results, to assess images associated with different response
variables in ecological applications. We present an application on the landscape ecology of fire
risk to evaluate the land-cover topology as a predictor of the fire occurrence probability. We use
a convolutional neural network (CNN) model without considering additional information such
as population density or weather features, which are generally used as variables [4]. We use a
supervised learning approach where land-cover images are labeled as fire or no-fire, representing the
presence/absence of an ignition. We also open the DL black box focusing on results interpretability.

Methods

Data. We tested our approach using data from south-central Chile (see Appendix). It includes eight
administrative regions ( 212,000 km2), corresponding to 28% of the country, which accounts for
98.5% of the historical fire occurrence [6]. We used a subset (January 2013 to December 2015) of
the public database of wildfires provided by the Chilean Forest Service that includes the ignition
point for each fire from 0.01 ha of burned area. We used this temporal window because to use the
most accurate land-cover map of the country [24]]. These land-cover data are in a raster grid that
includes ten classes: croplands, native forest, forest plantation, grasslands, shrublands, wetlands,
water bodies, impervious surfaces, barren land, and snow/ice. In this study area, the impervious
surface is represented mainly by urban and industrial infrastructure.

The association of fire point pattern with land-cover was carried out in the Google Earth Engine
(GEE). From these areas, we extract a buffered area with a radius of 560 m centered in randomly
generated points. Accounting for imbalance, we eliminate landscapes with a low proportion of
fire-prone classes, deleting a landscape with more than 30% of its pixels being non-flammable. We
associate each 1 km2 landscape with the fire occurrence frequency in the 2013-2015 period. The final
dataset comprises 17,579 32 x 32 images. We use the synthetic minority over-sampling technique
(SMOTE) [2]] to account for imbalanced data in the training set.

Model. Following the VGGNet architecture [[19]], our net stacks multiple (5) 3 x 3 filters to extract
topological features on top of each other before performing max-pooling operations. Depthwise
separable convolutions [3[] are used decrease the model size. We include batch normalization [[10] and
dropout [22] layers after each block to improve convergence and avoid over-fitting. We performed an
exhaustive grid search of the most relevant hyper-parameters of the model (learning rate, batch size,
and number of layers). We use data augmentation algorithms (rotation, zoom, and shifts) to improve
the model generalization. To further understand the impact of topological configurations, the role of
discontinuities within the landscape, and the proportion of different land-covers in fire susceptiblity,
we implement GradCAM [17]], guided backpropagation [18]], and guided GradCAM. The analysis of
these outputs provides insights into the information that the model focuses on to predict the most
likely class of a sample and obtain relevant local statistics.

Results

DFT predicted with an accuracy of 91.85% in the validation (25%) set after 50 training epochs
(area under the curve (AUC) = 0.98; specificity = 0.91, sensitivity = 0.96). A similar performance
was obtained when deploying the trained model over the entire dataset (AUC = 0.98, specificity =
0.95, sensitivity = 0.95, and accuracy = 92.4%). As expected, the inclusion of SMOTE and data
augmentation techniques had a strong impact on the model performance, significantly boosting
the original results (accuracy = 82.7%, sensitivity = 0.65, and AUC = 0.61) and improving the
convergence of the algorithm.

To understand the results of the model, we ordered the observations by their predicted probability of
ignition (F;), splitting them into three classes: high-risk (P; < 0.7), medium-risk (0.3 < P; < 0.7),
and low-risk (P; < 0.3). From the results (Fig. [2), we observe that the performance of the model
across all categories and metrics is stable, obtaining the best overall performance with the high-risk
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Figure 1: Summary results obtained for the entire dataset divided into three risk categories defined
from the predicted fire ignition probability. Performance metrics of the classification algorithm and
land-cover proportions are shown on the right panels. Resulting attention maps from one hundred
randomly selected samples using GradCAM and guided backpropagation (BP) are also shown.

group (accuracy = 100%). We observe clear patterns from the attention maps, focusing on the
interaction, adjacency, total area covered, number of land-cover discontinuities, like dense urban
areas with flammable grasslands or large areas with continuous flammable covers, to determine
wildfire ignition risk (Appendix Table 1; Fig. 4). The classified images were filtered using the masks
generated from the attention maps, allowing us to obtain zonal statistics of the most relevant areas.
As shown in Fig. 4, we calculate the zonal statistics at four levels depending on the heatmap density,
starting from the complete attention map to its densest area (red hotspots). The results for the entire
dataset are summarized in Table 1 and Fig.2, observing significant differences between all categories.

DFT predicts the risk category accurately, and the results showed the different landscape metrics to
understand why each image is classified as high, medium, or low-risk (Figs. 1 and 2). More than
95% of wildfires in Chile are human-caused fires [6]. Therefore, fire frequency is closely related to
zones with a human footprint, such as cities or other highly human-populated areas and roads, and
agricultural or forest plantation industry [7, [I3]]. Considering this evidence, we classified high-risk
landscapes as those with land-cover dominated by industrial activities, such as forest plantation
or agricultural activities, with a high population density represented by urban areas and high road
density. Conversely, low-risk landscapes are those with a homogeneous native forests land-cover and
low human population density. The results from DFT coincided with these criteria.

Moreover, the model classified 97% of the images in the expected risk category. Forest plantation
cover increases from 6% (low-risk) to 13% in high-risk landscapes, in agreement with the findings
in [[13]; however, these landscapes have a relatively stable proportion of the other land-cover types.
Another differentiating pattern is the average number of patches in the risk categories following an
increasing trend from 88 (low-risk) to 118 (high-risk) components. The number of patches is not
only a proxy of landscape fragmentation, but also of the landscape heterogeneity. Therefore, the
interpretation must be cautious [8]], and may be caused by different landscape processes depending
on the predominant land-cover types. Users must have a prior knowledge of the landscape processes
and dynamics for a correct interpretation of the models based on machine learning algorithms [[13].
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Figure 2: Risk predictions and characterization using activation maps. Horizontal bars indicate the
number of observations at different intervals representing the positive class probability. Samples
are then separated into three categories and characterized by calculating zonal statistics within the
attention maps hotspots. Zonal statistics are obtained by focusing on high-density areas of the map
to characterize the learning process of the classification model based on the detected topological
structures and interaction between multiple land-covers.
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Attention maps point out what specific patterns, interactions, or land-cover classes are critical for
image interpretation and categorization. Despite the previously mentioned differences between the
risk categories identified by DFT (Fig. 2), the landscape metrics that compare the complete image
against the hottest attention map areas show clear differences between the categories. They showed
that more fragmented but less diverse landscapes are classified as high risk, which is reflected in more
components and a lower Simpson’s index [12]]. These differences help improve the identification of
the most relevant patterns in a landscape, that affect the propensity of fire ignition, having the same
trend in both the complete image and the hot spots. The results agree with certain human-caused fires,
with fire ignition mainly associated with a highly fragmented wildland—urban interface [21]].

The attention maps also provide insights of which land-cover requires more attention to classify the
images in the risk categories. In Table 2 and Fig. 5, we show that different layers pay attention to
different land-cover types. In the original image, the dominant land-cover for the high-risk (HR)
image is forest plantation (47%); however, for layer O, DFT focused on non-vegetated areas. The
areas represented by urban land-covers and roads dominate the hottest pixels by 38% and the forest
plantation is only 21%. The attention paid by DFT in non-vegetated areas even increases when
filtering the landscape by the 75% hot spot, covering 73% of the hottest pixels. Layer 8 still paid
more attention to non-vegetated areas but in combination with grassland, as it is the second dominant
land-cover among the hottest pixels (75% threshold). Deeper in the net, DFT focused on the effect of
forest plantations, showing patterns similar to some recent findings [7, [13]]. The combined layers can
provide a general overview of the interaction among land-covers that boosts the propensity of fire
ignition as well as observing where the most critical interactions occur.

Conclusions

The interaction between land-covers, continuity, and heterogeneity of the landscape concerning fire
risk assessment is empirically evaluated for the first time using DL and the proposed topological
interpretation. In the field of forest fire protection, this novel methodology is a step toward landscape



planning under fire risk, avoiding dangerous land-cover spatial distribution, heterogeneity, and
interactions. In general, however, it could be an essential development in landscape pattern and process
interpretation in a broader sense for different ecological disciplines. The proposed methodology
adequately assesses the susceptibility to fire occurrence, using only information on land-cover.
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Figure 3: Case study data. Ignition points of wildfires distributed along the national territory of Chile
are highlighted (A). A buffer is generated for each point (B) to extract a rectangular land-cover image
centered at the ignition coordinates (C).
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Figure 4: Filtered landscapes using different attention levels (full map, top 30%, 50%, and 75% of
the densest areas). Attention masks are calculated at different density thresholds to filter the original
landscapes, focusing the analysis on the densest sections of the attention maps. Red to blue color
represent a gradient from the most to the least relevant zones to classify an image as a positive case.
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Figure 5: Zonal statistics at different layers (0, 8, and 19). Statistics are calculated by filtering the
original landscapes with the attention maps/masks generated from the GradCAM algorithm, focusing
the analysis on relevant regions of the landscape.
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Figure 6: End-to-end classification of an example HR landscape. GradCAM, guided GradCAM, and
filters visualizations are obtained at the different convolutional layers of the network to improve the
interpretability of the model and open the DL black box.
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Table 1: Zonal statistics. In this table, we present the statistics for high-risk (HR), medium-risk (MR),
and low-risk (LR) images filtered with attention maps at different density levels. We include the
total area of the landscape covered by the filter (% area heatmap), the average number of connected
components (Ncomp), the sum of all values in the filtered landscape divided by Ncomp (MN), and
the Simpson’s diversity index to illustrate the usage of our methodology.

Attention map threshold Risk level %Area Heatmap Ncomp MN  Simpson

HR 1 118.03 12.00 0.26
0% MR 1 103.00 15.68 0.29
LR 1 88.64 22.04 0.32
HR 0.24 4478  29.00 0.40
30% MR 0.25 35.83  40.00 0.49
LR 0.24 29.42 6.00 0.55
HR 0.12 24.65 25.50 0.42
50% MR 0.12 19.68 344 0.52
LR 0.12 16.14  38.00 0.58
HR 0.04 9.19 19.2 0.50
75% MR 0.04 7.51 23.9 0.58
LR 0.03 6.24 24.00 0.65

Table 2: Zonal statistics obtained at different layers of the model. The table summarizes the
proportions of croplands (CR), native forest (NF), forest plantations (FP), grasslands (GR), shrublands
(SL), and non-vegetated (NV) covers obtained from random samples of the three risk categories,
filtered using the full attention maps and compared with the proportions of the original landscape.
Significant variations across the layers illustrate how the network focuses its attention on specific
areas of the image during the classification procedure.

Attention map filtered at 0%
Layer Risklevel CR% NF% FP% GR% SL% NV %

0 HR 2 9 21 17 12 38
0 MR 11 9 6 25 41 4
0 LR 0 70 17 12 1 0
8 HR 2 10 28 16 10 33
8 MR 20 15 7 20 35 1
8 LR 0 67 12 21 1
19 HR 1 21 43 9 7 19
19 MR 28 14 4 19 29 3
19 LR 0 57 6 35 1 1
Original HR 1 18 47 9 6 18
Original MR 22 13 5 22 31 3
Original LR 0 51 13 33 2 1
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