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Abstract

Under the effects of global warming, extreme events such as floods and droughts
are increasing in frequency and intensity. This trend directly affects communities
and make all the more urgent widening the access to accurate precipitation fore-
casting systems for disaster preparedness. Nowadays, weather forecasting relies on
numerical models necessitating massive computing resources that most developing
countries cannot afford. Machine learning approaches are still in their infancy but
already show the promise for democratizing weather predictions, by leveraging any
data source and requiring less compute. In this work, we propose a methodology
for data-driven and physics-aware global precipitation forecasting from satellite
imagery. To fully take advantage of the available data, we design the system as
three elements: 1. The atmospheric state is estimated from recent satellite data.
2. The atmospheric state is propagated forward in time. 3. The atmospheric state is
used to derive the precipitation intensity within a nearby time interval. In particular,
our use of stochastic methods for forecasting the atmospheric state represents a
novel application in this domain.

1 Data-driven precipitation forecasting

Climate change is already affecting precipitation events and how water is distributed over the planet.
A warmer atmosphere has increased capacity at holding water vapor, resulting in increasing the
frequency and intensity of heavy rainfall [6]] and at the same time in draining water reserves. Direct
consequences of this trend are the saturation of watersheds and sewer systems, with higher risks of
flooding and landslides, and of polluting waters. This is particularly problematic for urban areas,
but also for agriculture and aquaculture, endangering livelihoods and causing severe economic loss.
Being able to predict these extreme events several days in advance would allow for mitigating their
impact.

However, currently deployed operational weather forecasting systems are based on numerical models
with computing and data demands that most developing countries cannot afford. Furthermore, they
have a prediction time lag of several hours[17], which delays prompt disaster response. Given the
amount of Earth Observational data and numerical model outputs available nowadays, machine
learning approaches have the potential to match operational systems’ performance and significantly
reduce their compute needs and their inference time lags. Yet, due to the scale and complexity of the
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Figure 1: System overview. The three steps are highlighted by different colours. Each step can be
viewed as a self-contained task, to be finally linked and fine-tuned together.

problem, state-of-the-art approaches in this field are limited to nowcasting (forecasting a few hours in
advance), or to local geographical areas.

In this paper, we propose a global, physics-informed and probabilistic Deep Learning system for
predicting precipitation rates up to three days ahead of time. The global scale is enabled by the use
of satellite imagery and allows for surpassing the nowcasting time barrier. Physics knowledge is
implicitly injected by processing a numerical model product (ERAS [7]) at training as an intermediate
representation. Due to data availability constraints elucidated in Section[2] we decouple the system
into three steps and provide preliminary results for each of them.

Related Work. Our work is motivated by three areas of related work. First, our work adds to
the domain of machine-learning-based precipitation forecasting, where a common approach is to
use Recurrent Neural Networks for precipitation nowcasting (i.e. forecasting few hours ahead)
[20]. Agrawal et al. [1]] proposed a U-Net-based nowcasting model from radar images, while
Senderby et al. [17]] proposes a network with spatial and temporal encoders to predict from both radar
and satellite images, although on a limited regional area. Another related area is physics-informed
machine learning, where a common approach is to incorporate physics constraints as an additional
loss term [4]. In this work, we instead emulate the output of a physics-based model, an approach also
seen in [12]]. Lastly, our work incorporates probabilistic forecasts; relevant techniques can be found
in stochastic video prediction [3}/9]]. In precipitation nowcasting, [17]] is an example of a probabilistic
model, where uncertainty is modeled by outputting precipitation histograms.

2 A physics-informed and probabilistic approach

To enable medium-range and global predictions, we incorporate physics knowledge into the precipita-
tion forecasting system by leveraging the reanalysis dataset ERAS. This product is generated by a
numerical model and provides a range of atmospheric-state variables appropriate for our precipitation
estimation, e.g. specific humidity, temperature and geopotential height at different pressure levels [7]).
By using this data source, we encourage the system to implicitly model physical laws. We further
make use of SimSat [2] which contains simulated-ﬂ satellite imagery from [European Centre for|
[Medium-Range Weather Forecasts (ECMWF)|at 3 h frequency for three spectral channels. Finally, as
precipitation ground truth, we consider IMERG, a global half-hourly precipitation estimation product
provided by NASA [g]]. More details about each dataset can be found in Appendix [A]

Directly forecasting precipitation is an intrinsically difficult task, as these three data sources are not
available at the same times. Training an end-to-end system, with all datasets simultaneously, would
limit the data availability to less than 5 years, which would consequently limit the capacity of the
trained model. We propose instead a three-step approach: 1) State Estimation: the weather satellite
imagery is processed to infer the atmospheric state of the Earth, 2) State Forecasting: a sequence

!'Using simulated satellite data in place of real ones minimizes data processing, as images are a global nadir
view of Earth, avoiding issues of instrument error and large numbers of missing values.
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of atmospheric states is analyzed to move the current state forward in time and 3) Precipitation
Estimation: the predicted state is then used to estimate the precipitation probability over the globe.
This approach has the advantage of leveraging all available data, as each step is tackled independently
at first, allowing to train larger models that are able to capture all different dynamics. This also allows
for easier comparison with existing baselines. Figure [[|shows an overview of the system.

2.1 State Estimation

The first aspect of the system extracts from weather-satellite imagery a compact representation of
the state of the atmosphere, which in essence is a data assimilation problem. We formulate this as a
regression task modeled by Recurrent Neural Networks. The network takes a historic sequence of
SimSat data as input (in regular intervals of At from ¢ = —T to ¢ = 0), and outputs the atmospheric
state vector at t = 0. The atmospheric state vector consists of 17 ERAS variables of value to the
downstream precipitation prediction problenﬂ Amongst these variables, we report the prediction
results on temperature at 850 hPa (t-850) and specific humidity at 500 hPa (q-500).

Other than SimSat data, other forms of data, which are conducive to the state estimation task, can be
expected to be available as input to the network at ¢ = 0. This includes readily-available near-ground
observations such as sp and t2m, or a past atmospheric state vector up to 24 hours before. Therefore,
we consider three alternative setups for depending on input data availability: SimSat only, SimSat
and ground observations and SimSat, ground observations and historical atmospheric states.
Additional details about each setup are provided in Appendix [B]

For this task, we train a Convolutional LSTM model [20] and minimize the latitude-weighted Mean
Squared Error [[15] as loss function. As baselines, we consider Persistence (i.e. using 1-day old
ERAS variable values as prediction at ¢ = 0), and Climatology (i.e. using the training set mean as
prediction for each variable). We process all data sources at 5.625° resolution and use 2016-2017
time interval for training, 2018 for validation, and 2019 for test. In[Table I} we see that all three
setups are able to reconstruct the state variables at £ = 0, outperforming the considered baselines. As
expected, SimSat, ground observations and historical atmospheric states setup achieves the best
performance, most noticeably for t-850. We also observe an encouraging result for SimSat only,
which predicts q-850 similarly to the third setup.

2.2 State Forecasting

The second part of the system propagates the atmospheric state (the ERAS5 variables predicted at
step forward in time. Using ERAS as training data will implicitly allow the model to emulate
the physical dynamics of the atmosphere. This ability to probe the weather state provides a route
to surpass the forecast horizon of MetNet [17]. In order to handle the inherent stochasticity of the
atmospheric system, we implement a stochastic video prediction (SVG) [13] model. Specifically,
we base our solution on the model proposed in [S]], which tackles the problem of predicting the
most likely futures by incorporating the usage of a|Variational Auto-Encoders (VAE)|for sampling
different, sharp futures from a probability distribution learned from the data itself. To improve

2We have chosen these through empirical correlation analysis as well as domain expert advice
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Figure 2: State forecasting RMSE as a function of lead time. q-500 and t-850 are given in units of
kg kg~! and K respectively.

prediction sharpness, we modify the architecture with the addition of adversarial losses to the learning
process, inspired by [[1919, [11]. To the best of our knowledge, this is the first attempt to forecast the
atmospheric state with a probabilistic machine learning model.

For this task, we split the ERAS dataset at 5.625° resolution into training/validation/test sets using
the following time intervals: for training, 2010 to 2016 inclusive; for validation, 2017 and 2018;
for test, 2019. Inputs consist of 12 h-long time series, at a 3 h frequency. The model outputs a full
state, three hours in the future; the prediction is carried out iteratively up to 72 h. Figure 2] reports
the latitude-weighted Root Mean Square Error of t-850 and q-500 as a function of lead time. We
compare results on both variables to Persistence (at t = 0) and report for t-850 the performance
achieved by Weatherbench and the [Integrated Forecast System (IFS)| /FS from [ECMWEF| on this
task (available in [15]]). The results show that the methodology has great potential since it performs
comparably to the other methodologies in the field.

2.3 Precipitation Estimation

The final step consists in estimating precipitation intensity given the predicted state of the atmosphere.
For this task, we make use of as target ground-truth and of ERAS5’s variables predicted in
the previous steps. Both datasets are retrieved at 0.25° resolution. We implement a gridcell-wise
Fully Connected Neural Network (FCNN) as global or regional contexts are not required when
estimating the precipitation at the current time. As precipitation intensity has an extremely skewed
distribution, we convert the problem to a classification task by defining four classes of increasing
precipitation intensity accumulated over three hours (in mm h~!, No-precip [0, 1], Drizzle |1, 7.5],
Light ]7.5,22.8], Heavy > 22.8) and by sampling data equally from each class. We further optimize

the Focal Loss [10]. More details are provided in [Appendix D}

For this task, we split the ERAS5 and [MERG] datasets into training/validation/test sets using the
following time intervals: for training, 2010 to 2016 inclusive; for validation, 2017 and 2018; for
testing, 2019. We pre-process the target values by accumulating precipitations over 3 h periods;
this is done with respect to the frequency of atmospheric state estimation in the second step, such
that a future harmonization of the three steps can be done with ease. We report in the
obtained F1 scores on the test set compared to ERAS’s fotal precipitation (tp) baseline. Performance
is assessed by per-class F1 scores in order to equally study precision and recall, and to highlight
results over rainy classes. Overall, the FCNN is able to achieve performance similar to ERA’s one,
and it even outperforms this numerical model on all classes but drizzle. However, both models show
limited predictive capabilities on minority classes. We conjecture that FCNN’s performance could be
improved by (i) extending the input feature set, (ii) carefully tuning the class weights and proportions,
and (iii) extending the training set.

3 Conclusion

We have designed a three-step approach to weather forecasting and assessed the performance of each
step in isolation. The next step is to couple all three components together to produce an end-to-end
forecasting system. We envisage this will require a further step of fine-tuning to harmonize the



models. In particular, the state forecasting component has a tendency to produce blurred images when
forecasting for longer times, as commonly observed with state forecasting [[15]. Future work will
balance the adversarial loss importance to produce sharp images throughout the prediction window.
This will be key as the precipitation estimate requires sharp images of the atmospheric state.
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Dataset descriptions

SimSat [SimSaf emulates three spectral channels from the Meteosat-10 SEVIRI satellite [2]] and is

generated from ECMWHE's high-resolution weather-forecasting model using the RTTOV
radiative transfer model [16]. provides information about global cloud cover and
moisture features and has a native spatial resolution of about 0.1° at three-hourly intervals.
This dataset is available from 2016 onward.

ERAS [ERA5|provides hourly estimates of a variety of atmospheric, land and oceanic variables, such

as specific humidity, temperature and geopotential height at different pressure levels [7]].
Estimates cover the full globe at a spatial resolution of 0.25° and are available from 1979 to
present.

IMERG [IMERG]is a global half-hourly precipitation estimation product provided by NASA [8]].

Specifically we use the Final Run product which primarily uses satellite data from multiple
polar-orbiting and geo-stationary satellites. This estimate is then corrected using data from
reanalysis products (MERRA2, ERAS5) and rain-gauge data. comes at native spatial
resolution of 0.1° and is available from 2004.

These data sources are available all together only from 2016 onward.

B

B.1

State Estimation

Training setups

We define the three training setups as follows, depending on the data used as input:

1. only. Here the input sequence is formed of the 3 frequency bands of data
(clbt : 0 — 2). We take At =3 and T = 12.

2. [SimSat|and ground observations. The input sequence is formed of clbt : 0 — 2 and ground
observations (namely sp and t2m). We take At = 3 and T" = 12.



3. ground observations and historic atmospheric states. We take an input se-
quence At = 24 and T" = 72. Attime steps t = —72 to t = —24, the input vector is formed
of clbt : 0 — 2, ground observations and the ERA state variables. At ¢ = 0, the input vector
is formed only of clbt : 0 — 2 and ground observations.

Each of the input sequences specified above is then concatenated with static variables (latitude,
longitude, land-sea mask, orography, soil type), repeated per time step. As output, we regress the
following ERAS variables: geopotential, temperature and humidity (sampled at 300 hPa, 500 hPa
and 850 hPa), cloud liquid water content and cloud ice water content (sampled at 300 hPa and
500 hPa), as well as the surface pressure (sp) and 2-metre temperature (t2m).

B.2 Additional results

To understand the state extraction results further, [Figure 3| visualizes the prediction given by the third
setup ground observations and historic atmospheric states of a randomly chosen time
step. The model is indeed able to capture each variable’s specificity.

t-850: Temperature q-500: Humidity

Ground Truth

Prediction

Figure 3: State Estimation Result of a randomly chosen time point.

C State Forecasting

C.1 Additional results

As a qualitative result of the methodology, we can refer to Figure[d] where we depict variable t2m,
first globally and then focused on a different sampled future above Australia. Here we can notice the
qualitative difference between the two futures, both sampled from the same current state.

D Precipitation Estimation

We provide further details about the experimental setup for performing the precipitation estimation
step. We start by justifying the choice of using [MERG] as target value for our experiments, to
then describing the data sampling strategies for tackling the output imbalance and finally reporting
additional results.

D.1 Analysis of precipitation estimates

Precipitation intensity is an extremely imbalanced variable, as its probability density decreases
exponentially fast. In general, precipitation events of intensity higher than 2.5 mmh~" are rare and
heavy or violent rains seldom occur. Data-driven approaches generally suffer from data imbalance, as



Figure 4: Qualitative Result of the stochastic video prediction algorithm on the t2m variable. The
reader can note the different outcomes on Australia where two different futures have been sampled.

they tend to be biased towards the expected value of the target distribution. This problem is aggravated
by the fact that certain precipitation estimates fail to accurately represent extreme precipitation events.

[5(a)] shows the distribution of precipitation for years 2010-2016 for ERA5’s total precipitation and
IMERG?’s calibrated precipitation at different resolutions. Regridding is achieved using bilinear
interpolation, which does not conserve global precipitation (within an hour). However, using
conservative interpolation to such a coarse resolution was found to remove all extreme precipitation
events. In general, distributions are positively skewed with no precipitation and light precipitation
(0mm to 2.5 mm) events over-represented for both estimates. We further notice that precipitation
distributions vary depending on the dataset, with ERAS modelling poorly extreme events, and on the
selected resolution, in particular for ERAS5. The choice of target dataset is indeed crucial for training
accurate models.
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Figure 5: Precipitation distributions for years 2010-2016. Densities are reported in logarithmic scale.

D.1.1 Data sampling

In order to deal with the large output imbalance, we define the following four classes of precipitation
intensity accumulated over three hours:

1. No-precipitation: precipitation intensity below 1 mm:;

2. Drizzle precipitation: precipitation intensity between 1 and 7.5 mm;

3. Light precipitation: precipitation intensity between 7.6 and 22.8 mm;

4. Heavy precipitation: precipitation intensity above 22.8 mm.
These classes are useful for defining data sampling strategies to balance the target distribution at
training and for defining metrics for assessing the quality of predictions fairly across the types of
precipitation. Figure 5(b)|reports the obtained class distributions for [MERG]at 0.25° resolution.

The choice of a gridcell-wise model allows us to balance the defined classes at training, through a
masking process when evaluating the chosen loss function: given an input X, and a target label mask



(a) [MERG] ground-truth. (b) FCNN prediction.

0
Figure 6: Comparison of ground-truth and predicted precipitations, accumulated over 3-hour period
in 2019. Globally our model accurately captures the rain no-rain dichotomy. Our best networks
struggle with over prediction of heavy rain, particularly in the tropics.

yt, we select all pixels of the minority class within the input X; and randomly select an equal amount
of pixels for each of the other classes, masking-out the remaining pixels. This procedure ensures
that classes are equally represented at training and that the model can be easily fine-tuned together
with the models of the previous steps. To further address the data imbalance, in the experiments
we train the model by minimizing the Focal Loss [10]]. This loss is a modified version of the Cross
Entropy loss that decreases the weights of well-classified examples, so that the training focuses on
hard examples which are typically the ones from under-represented classes.

D.1.2 Model specifications

We build a gridcell-wise Fully Connected Neural Network (FCNN) as a concatenation of a batch
normalization, five fully connected layers with Swish activation [[14]] and dropout [18]], and a final
fully connected layer.

Inputs consist of ERA5’s temperature (t), humidity (q), cloud liquid water content (clwc), cloud ice
water content (ciwc), at 300 hPa, 500 hPa and 850 hPa geopotential levels and surface temperature
(sp), land-sea mask (Ism) and orography. Considered that at a given time ¢ [MERG] provides the
precipitation accumulated over the period [¢, ¢ + 1], the model takes as inputs the feature values for
both time steps: X; = [z; x4+1]. At training, we feed into the model only gridcells with latitude in
the range [—60°, 60°], as is not available at higher latitudes.

D.1.3 Additional results

Figure [6(a)| provides an example of the obtained ground-truth global precipitations and Figure [6(b)|
reports the predictions of our FCNN for the same time step. Visually, we notice that our FCNN is
accurate in distinguishing between rainy and non-rainy cells, but it has a tendency to overestimating
precipitation rates. Notice that both ERAS and FCNN models show limited predictive capabilities on
minority classes, although for the opposite reasons: ERAS underestimates precipitations, as shown in
while the trained FCNN overestimates them.
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