

Deep Learning for Climate Model Output Statistics

Michael Steininger

Katrin Ziegler

Prof. Dr. Heiko Paeth

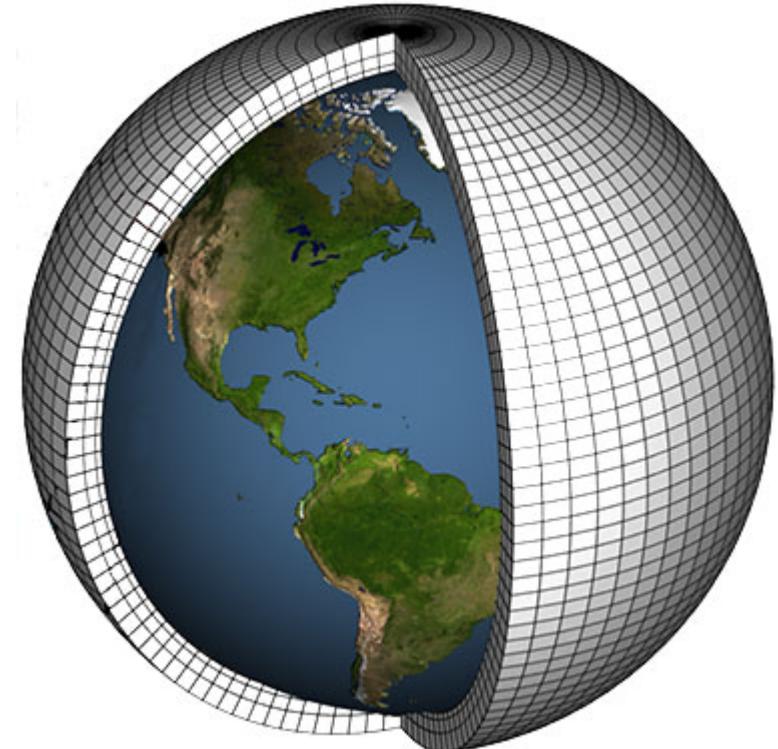
Daniel Abel

Dr. Anna Krause

Prof. Dr. Andreas Hotho

Motivation

- Numerical climate models provide important information for the prospective effects of climate change
- But they also suffer from **systematic errors** and **deficiencies in climate process representation**
- **Model output statistics (MOS)** use statistical techniques to reduce these errors
- Can MOS based on deep learning reduce these errors further?



Source: <https://str.llnl.gov/december-2017/bader>

Outline

- Model Output Statistics (MOS)
- Deep Learning for Climate MOS: ConvMOS
- Experiment
- Results
- Conclusion & Future Work

Model Output Statistics (MOS)

- Goal: Correct modeled climate variable (e.g. precipitation) to correspond more closely to observational data
- Previously published approaches:
 - Linear Regression ([Paeth 2011], [Eden et al. 2014])
 - Random Forests ([Sa'adi et al. 2017], [Noor et al. 2019])
 - Support Vector Machines ([Sa'adi et al. 2017], [Pour et al. 2018], [Ahmed et al. 2019])
 - Multilayer Perceptrons ([Moghim et al. 2017])
- Study area often represented as a 2D grid of locations
→ Typically one MOS model per location of interest

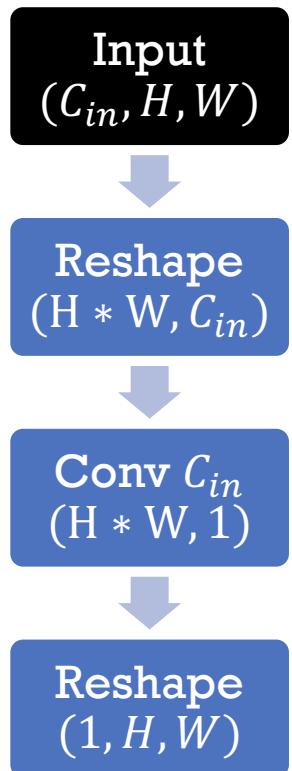
Deep Learning for Climate MOS

- What types of errors are there in climate models?
 - Location specific errors
 - Systematic errors
- How to efficiently reduce both types of errors?
 - Combination of **per-location model parameters** (location specific errors) and **global model parameters** (systematic errors)
- Two types of modules:
 - Local network
 - Global network

Deep Learning for Climate MOS

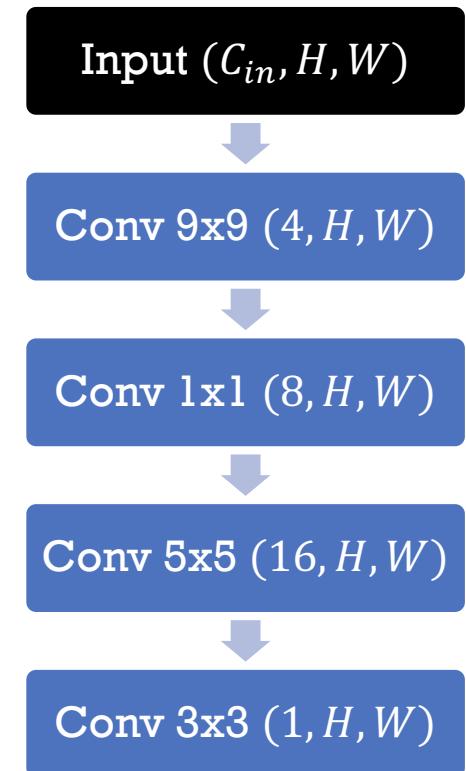
Local Network

- Linear regression per location/cell
- Implemented with a 1D CNN
 - Easy integration into architecture
 - 1 Filter per location (groups = C_{in})



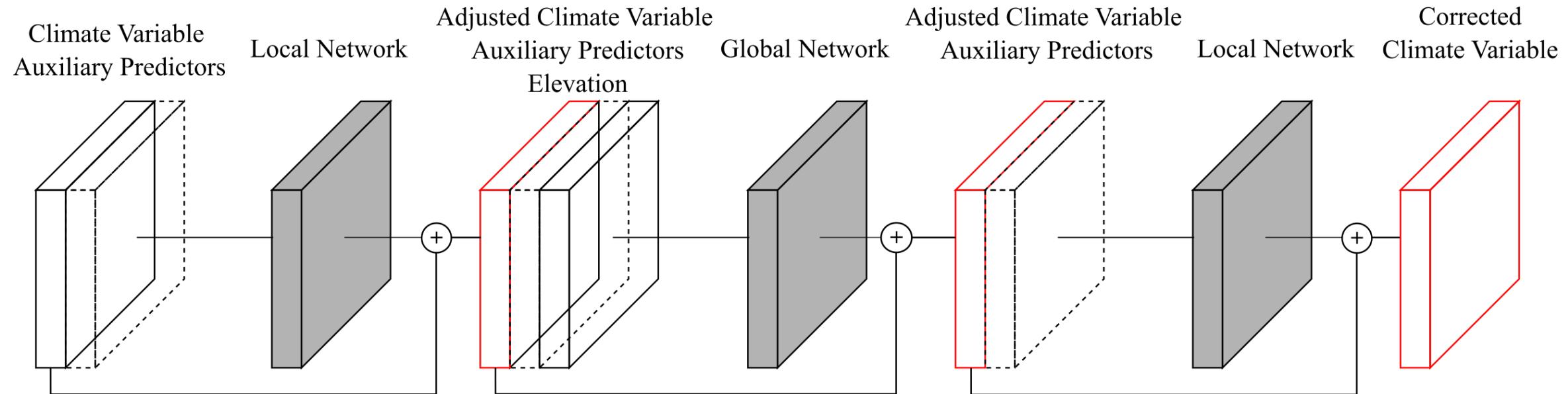
Global Network

- 2D CNN
- Activation: ReLU
- Padding: Keep height/width same



C_{in} = # input channels = # number of predictors, H = Height, W = Width

ConvMOS



Experiment

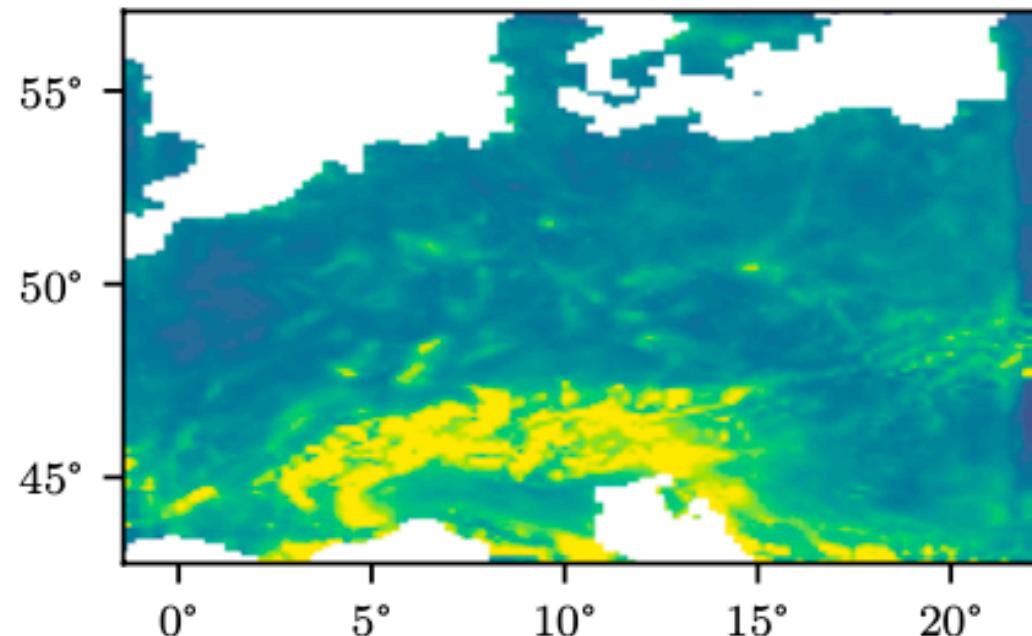
- Apply MOS for **daily precipitation** data of the climate model **REMO**
 - Study area: Extended German region at 0.11° resolution (-1.43° to 22.22° E and 42.77° to 57.06° N)
 - **23 predictors** per cell (e.g. precipitation, temperature, wind, ...)
 - Predictand: Observed precipitation from the **E-OBS 19.0e** dataset
 - Data split: Training set (2000-2009), Validation set (2010), Test set (2011-2015)
- Baseline MOS approaches for comparison:
 - Local linear regression (Lin)
 - Non-local Principal Component Regression (NL PCR)
 - Non-local Random Forest (NL RF)

Results

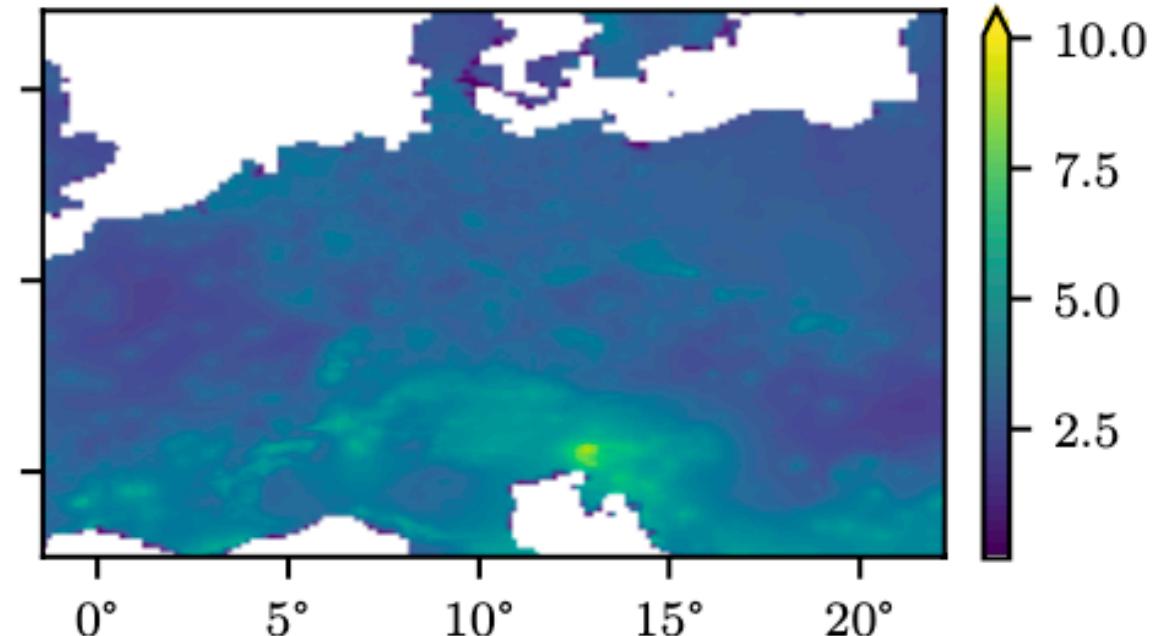
MOS \ Metric	RMSE	Corr.	Skill	R ²	Bias
MOS					
None	5.32	0.49	0.93	-28.24	0.31
Lin	3.77	0.49	0.93	0.23	0.03
NL PCR	3.37	0.62	0.92	0.36	0.02
NL RF	3.39	0.61	0.81	0.36	0.03
ConvMOS	2.99 ± 0.01	0.72 ± 0.00	0.92 ± 0.00	0.49 ± 0.01	-0.10 ± 0.06

Note: RMSE and Bias in mm, other metrics without unit

Results (RMSE in mm)



(a) REMO raw



(b) ConvMOS

Conclusion & Future Work

- Our work shows good results for Deep Learning MOS
 - Further work in this direction is promising
- Improved MOS allows for more accurate climate data especially at high spatial resolutions
 - More accurate information on prospective effects of climate change
- Future Work:
 - Further analysis
 - Additional comparisons (different study areas, different climate variable, ...)
 - Incorporate time

Thank you for your attention