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Remote Sensing Applications

» Remote sensing used for tracking deforestation, crop land prediction,
land cover classification

= Example: crop type classification
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Obstacle: Lack of labeled data

Prohibitively expensive to collect labels via surveys esp. in developing
countries

Goal: Make good predictions globally
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Incorporating auxiliary data as inputs

= Often have auxiliary data in addition to satellite input
» E.Q., temperature, precipitation, data from other satellites
» Standard approach (aux-inputs): use auxiliary data as another input
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Using auxiliary data as inputs can hurt under-resourced

countries

» Aux-inputs improves accuracy in
countries with labeled data

= We find that it worsens performance
in under-resourced (OOD) countries

» 90% -> 84% on cropland prediction
» 58% -> 55% on landcover prediction

Labels
(Y)

Data Auxiliary info
(X) (2)

Stanford University



Incorporating auxiliary data as outputs

“Aux-outputs”: pre-train by predicting auxiliary information as outputs on
unlabeled data

z: ERAS5 Climate Data
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2. Fine-tune: JERIEINE . y: crop type

aux-outputs

x: Landsat image
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Predicting auxiliary data as outputs helps under-

resourced countries

» [ntuition: learns good initial features for all countries

» We prove this improves OOD error theoretically for
linear regression

= Aux-outputs improves accuracy in OOD countries
» 90% -> 92% on cropland prediction
» 58% -> 61% on landcover prediction
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In-N-Out combines benefits from aux-inputs and aux-
outputs

1. Train aux-inputs model (better in seen countries)
2. Pre-train aux-outputs (better for unseen countries)
3. Pseudolabel unlabeled data from seen countries with trained aux-inputs

Trained . y: crop type pseudolabel

W — . aux-inputs
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4. Finetune aux-outputs model on labeled + pseudolabeled data

pre-trained _ {
aux-outputs y: crop type
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In-N-Out: Intuition

« Combine benefits of aux-inputs and aux-outputs using self-training

« Use aux-inputs to produce better pseudolabels for unlabeled data in
seen countries

« More data improves fine-tuning of a pretrained aux-outputs model
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Datasets

Dataset Name

CelebA

Cropland

Landcover

Data Type

RGB Image

Visualization (x)

7 binary attributes

Landsat Image

MODIS Time Series

Aux Info (2) Vegetation, Lat/Lon Meteorological Data
Target (y) Male/female? Cropland/not cropland? Land cover class
ID-Split People without hats IA, MN, IL Outside Africa

OOD-Split People with hats IN,KY Africa
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In-N-Out does better in theory and practice

= \We prove in a linear regression setting that In-N-Out improves both OOD
and in-distribution accuracy

» OOD Accuracy

Standard Training  72.6% 90.3% 58.3%
In-N-Out 80.4% 92.2% 62.6%

» In-distribution Accuracy

Standard Training  90.5% 94.5% 75.9%
In-N-Out 93.8% 95.5% 77.1%
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