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Abstract

Many machine learning applications used to tackle climate change involve lots
of unlabeled data (such as satellite imagery) along with auxiliary information
such as climate data. In this work, we show how to use auxiliary information in
a semi-supervised setting to improve both in-distribution and out-of-distribution
(OOD) accuracies (e.g. for countries in Africa where we have very little labeled
data). We show that 1) on real-world datasets, the common practice of using
auxiliary information as additional input features improves in-distribution error but
can hurt OOD. Oppositely, we find that 2) using auxiliary information as outputs of
auxiliary tasks to pre-train a model improves OOD error. 3) To get the best of both
worlds, we introduce In-N-Out, which first trains a model with auxiliary inputs and
uses it to pseudolabel all the in-distribution inputs, then pre-trains a model on OOD
auxiliary outputs and fine-tunes this model with the pseudolabels (self-training). We
show both theoretically and empirically on remote sensing datasets for land cover
prediction and cropland prediction that In-N-Out outperforms auxiliary inputs or
outputs alone on both in-distribution and OOD error.

1 Introduction
When models are tested on distributions that are different from the training distribution, they typically
suffer large drops in performance [44, 2, 22, 17, 3]. This is an especially salient obstacle in remote
sensing applications, which includes central problems such as predicting poverty, crop type, and land
cover from satellite imagery for downstream use in climate change mitigation [52, 21, 49, 40, 38].
In some developing African countries, labels are scarce due to the lack of economic resources to deploy
human workers to conduct expensive surveys [21]. To make accurate predictions in these countries,
we must extrapolate to out-of-distribution (OOD) examples across different geographic terrains and
political borders to create a globally applicable model.

While labels are scarce, auxiliary information (e.g. climate data in remote sensing) is often available for
every input. In many applications, we additionally have access to a large amount of unlabeled data (e.g.
global satellite imagery) along with their corresponding auxiliary information. How should auxiliary
information be used in this setting? One way is the use them directly as auxiliary input features
(aux-inputs); another is to treat them as prediction outputs for an auxiliary task (aux-outputs) in
pre-training or multi-task learning. Which approach is better for in-distribution or OOD performance?

In remote sensing, satellite imagery is paired with aux-inputs to predict the desired output [49, 54].
Aux-inputs can provide more features to improve in-distribution performance, but in this paper we
find they can hurt OOD error. Conversely, aux-output methods such as pre-training, transfer learning,
and multi-task learning may improve OOD performance by changing the inductive bias of the model
through auxiliary supervision [50, 7]. We prove in a multi-task linear regression setting [13, 46] that aux-
inputs can improve in-distribution error and worsen OOD error, while aux-outputs improve robustness
to arbitrary covariate shift by first pre-training on unlabeled data to predict auxiliary information.
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Figure 1: A sketch of the In-N-Out algorithm which consists of three steps: 1) use auxiliary
information as input (Aux-in), 2) use auxiliary information as output targets in pretraining (Aux-out),
3) fine-tune the pretrained model from step 2 using the labeled data and in-distribution unlabeled data
with pseudo-labels generated by the Aux-in model from step 1.

Can we do better than using auxiliary information as inputs or outputs alone? We propose In-N-Out
to combine the benefits of auxiliary inputs and outputs (Figure 1). In-N-Out first uses an aux-inputs
model, which has good in-distribution accuracy, to pseudolabel in-distribution unlabeled data. Then
we use these pseudolabels for self-training, where a pretrained model (using aux-outputs) is fine-tuned
on the larger labeled and pseudolabeled dataset. We prove that In-N-Out, which combines self-training
and pretraining, further improves both in-distribution and OOD error over just pretraining.

We show empirical results on CelebA and two remote sensing tasks (land cover and cropland
prediction) that matches the theory. On all datasets, In-N-Out improves OOD accuracy and has
competitive or better in-distribution accuracy (1-2% in-distribution, 2-4% OOD over baseline on
remote sensing tasks) over aux-inputs or aux-outputs alone.

2 Setup
Let x∈Rd be the input (e.g., a satellite image), y ∈R be the target (e.g., crop type), and z ∈RT be
auxiliary information—typically low-dimensional semantically meaningful features (e.g., soil type).

Training data. Let Pid and Pood denote the underlying distribution of (x,y,z) triples in-distribution
and out-of-distribution, respectively. The training data consists of (i) in-distribution labeled
data {(xi, yi, zi)}ni=1 ∼ Pid, (ii) in-distribution unlabeled data {(xid

i , z
id
i )}m1

i=1 ∼ Pid, and (iii)
out-of-distribution unlabeled data {(xood

i ,zood
i )}m2

i=1∼Pood.

2.1 Models
We consider three common ways to use the auxiliary information (z) to learn a model.
Baseline (f̂bs). Baseline ignores auxiliary information and learns f̂bs :x 7→y from labeled data.
Aux-inputs (f̂in). The aux-inputs model uses the auxiliary information as features and learns a
function f̂in : (x,z) 7→y from labeled data.
Aux-outputs (f̂out). The aux-outputs model leverages the auxiliary information z by using them as
the prediction targets ofT auxiliary tasks, in hopes that there is a low-dimensional feature representation
w that is common to predicting both z and y. Training the aux-outputs model consists of two steps:

In the pre-training step, we use all the unlabeled data to learn a shared feature representation w.
Specifically, we learn a feature map ĥout :x 7→w and a mapping ĝz

out :w 7→z such that f̂out = ĝz
out◦ĥout

minimizes the training loss on all unlabeled data pairs (x,z).

In the transfer step, the model uses the pre-trained feature map ĥout and the labeled data to learn
the mapping gy

out :w 7→ y from feature representation to target. The estimate of the target mapping
is ĝy

out = argmingy
out
R̂trans(ĥout, g

y
out), where R̂trans(ĥout, g

y
out) = 1

n

∑n
i=1 `(g

y
out(ĥout(xi)), yi) is the

transfer empirical risk. The final aux-outputs model is f̂out = ĝy
out◦ĥout. Like the baseline model, the

aux-outputs model ignores the auxiliary information for prediction.

3 In-N-Out: combining auxiliary inputs and outputs
We analyze these algorithms in a multi-task linear regression setting, formalized in Appendix B and C.
We formalize all theorems in Appendix C and D and prove them in Appendix E, but give an outline here.
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Algorithm 1: In-N-Out (see Section 3 for formal description)
Data: labeled data {(xi,yi,zi)}ni=1∼Pid, in-distribution

unlabeled data {(xid
i ,z

id
i )}m1

i=1∼Pid, OOD unlabeled data {(xood
i ,zood

i )}m2
i=1∼Pood

Learn aux-inputs model f̂in : (x,z) 7→y from labeled in-distribution data {(xi,yi,zi)}ni=1∼Pid;
Pre-train ĥout :x 7→z on aux-outputs from all unlabeled data {(xid

i ,z
id
i )}m1

i=1∪{(xood
i ,zood

i )}m2
i=1;

Return f̂= ĝ◦ĥout :x 7→y, trained with pseudolabels of f̂in: {(xi,yi)}ni=1∪{(xid
i ,f̂in(xid

i ,z
id
i )}m1

i=1

CelebA Cropland Landcover

Visualization (x)

Aux Info (z) 7 binary attributes Vegetation, Lat/Lon Meteorological Data
Target (y) Male/female? Cropland/not cropland? Land cover class
ID-Split People without hats IA, MN, IL Outside Africa

OOD-Split People with hats IN, KY Africa

Figure 2: Summary of the datasets used in our experiments.

Aux-inputs help in-distribution, but hurt OOD. Proposition 1 in Appendix C shows that
aux-inputs help in-distribution but Example 1 shows that aux-inputs can hurt accuracy OOD.

Aux-outputs help OOD. Our first main contribution is that auxiliary outputs help under arbitrary
covariate shift, assuming we have lots of unlabeled data.

Theorem 1. In the linear setting, the aux-outputs model improves the out-of-distribution risk Rood
over the baseline, for any OOD distribution:

E[Rood(f̂out)]≤E[Rood(f̂bs)]. (1)

In-N-Out. We propose the In-N-Out algorithm (Algorithm 1), which combines both the aux-inputs
and aux-outputs models for further complementary gains (Figure 1). Since the aux-inputs model has bet-
ter in-distribution performance, we use it to pseudolabel in-distribution unlabeled data (e.g., data from
non-African locations). The pseudolabeled data provides more effective training samples (self-training)
to fine-tune a model pre-trained by predicting aux-outputs on all unlabeled data (e.g., including Africa).
The In-N-Out model f̂= ĝ◦ĥout optimizes the empirical risk on labeled and pseudolabeled data:

ĝ=argmin
g

(1−λ)R̂trans(ĥout,g)+λR̂st(g) (2)

where R̂st(g) = 1
m1

∑m1

i=1`(g(ĥout(x
id
i )),f̂in(xid

i ,z
id
i )) is the self-training loss on pseudolabels from

the aux-inputs model, and λ ∈ [0,1] trades off between labeled and pseudolabeled losses. In our
experiments, we fine-tune ĝ and ĥout together. In the linear regression setting, we show that In-N-Out
improves over aux-outputs for arbitrary covariate shifts. The formal result is in Theorem 4 in
Appendix D, with the proof in Appendix E.

Theorem 2 (Informal). In the linear setting, if X and Z together contain most of the information
required to predict Y (E[Var(Y |X,Z)] is small), the In-N-Out model improves the out-of-distribution
riskRood over aux-outputs, for any OOD distribution:

E[Rood(f̂)]<E[Rood(f̂out)]. (3)

4 Experiments
We show on remote sensing datasets for land cover and cropland prediction that aux-inputs can hurt
OOD performance while aux-outputs improve OOD performance. In-N-Out improves OOD accuracy
and has competitive or better in-distribution accuracy over other models on all datasets.

4.1 Datasets and Experimental Setup
Cropland. Crop type or cropland prediction is an important intermediate problem for crop yield
prediction, which can aid efficient agricultural practices (“precision agriculture”) that are adaptable to
different crop regions [5, 23, 28, 38]. The input x is a 50×50 RGB image taken by a satellite, the target
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CelebA Cropland Landcover
ID Acc OOD Acc ID Acc OOD Acc ID Acc OOD Acc

Baseline 90.46± 0.85 72.64± 1.39 94.50± 0.11 90.30± 0.75 75.92± 0.25 58.31± 1.87
Aux-inputs 92.36± 0.29 77.4± 1.33 95.34± 0.22 84.15± 4.23 76.58± 0.44 54.78± 2.01
Aux-outputs 94.0± 0.24 77.68± 0.59 95.12± 0.15 91.63± 0.21 72.48± 0.37 61.03± 0.97
In-N-Out (no pretrain) 93.8± 0.56 78.54± 1.31 94.93± 0.15 91.23± 0.61 76.54± 0.23 59.19± 0.98
In-N-Out 93.42± 0.36 79.42± 0.70 95.45± 0.16 91.94± 0.57 77.43± 0.39 61.53± 0.74
In-N-Out + repeated ST 93.76± 0.46 80.38± 0.68 95.53± 0.19 92.18± 0.40 77.10± 0.30 62.61± 0.58

Table 1: Accuracy (%) of models using auxiliary information as input, output, or both. In-N-Out
improves ID and OOD over aux-inputs or aux-outputs. Results are averaged over 5 trials with 90%
intervals. Repeated ST refers to one round of self-training on top of In-N-Out.

y is a binary label that is 1 when the image contains majority cropland, and the auxiliary information
z is the center location coordinate plus 50×50 vegetation-related bands. We use the Cropland dataset
from Wang et al. [49], with data from the US Midwest. We designate Iowa, Missouri, and Illinois as
in-distribution and Indiana and Kentucky as OOD. Following Wang et al. [49], we use a U-Net-based
model [39]. See Appendix F.1 for details.

Landcover. Land cover prediction involves classifying the land cover type (e.g., “grasslands”) from
satellite data at a location [15, 40]). These land cover models can aid climate scientists in tracking
ecological deterioration such as deforestation or melting ice sheets on a global scale. The input x is
a time series measured by NASA’s MODIS satellite [48], the target y is one of 6 land cover classes,
and the auxiliary information z is climate data (e.g. temperature) from the ERA5 satellite [4]. We
designate non-African locations as in-distribution and Africa as OOD. We use a 1D-CNN to handle
the temporal structure in the MODIS data. See Appendix F.2 for details.

CelebA. In CelebA, the input x is a RGB image (resized to 64×64), the target y is a binary label
for gender, and the auxiliary information z are 7 (of 40) binary-valued attributes (e.g. presence of
makeup, beard). We designate the set of images where the celebrity is wearing a hat as OOD. We use
a ResNet18 as the backbone model architecture for all models (see Appendix F.3 for details).

4.2 Results
Table 1 compares the in-distribution (ID) and OOD accuracy of different methods. Each method is
trained with early-stopping and hyperparameters are chosen using a validation set. In our experiments,
we also consider augmenting In-N-Out models with repeated self-training (repeated ST), which has
fueled recent improvements in both domain adaptation and ImageNet classification [42, 53]. For one
additional round of repeated ST, we use the In-N-Out model to pseudolabel all unlabeled data (both
ID and OOD) and also initialize the weights with the In-N-Out model. In all datasets, pretraining with
aux-outputs improves OOD performance over the baseline, and In-N-Out (with or without repeated
ST) generally improves both in- and out-of-distribution performance over all other models.

In our remote sensing datasets, aux-inputs can induce a tradeoff where increasing ID accuracy hurts
OOD performance. In cropland prediction, even with a small geographic shift (US Midwest), the
baseline model has a significant drop from ID to OOD accuracy (4%). The aux-inputs model improves
ID accuracy almost 1% above the baseline but OOD accuracy drops 6%. In land cover prediction, using
climate features as aux-inputs decreases OOD accuracy by over 4% compared to the baseline. The
aux-outputs model improves OOD, but decreases ID accuracy by 3%. In both datasets, In-N-Out-based
models generally improve both in- and OOD accuracy over all models.

In CelebA, using auxiliary information either as aux-inputs or outputs improves both ID (2-4%) and
OOD accuracy (5%). In-N-Out achieves the best OOD performance and comparable ID performance
even though there is no tradeoff between ID and OOD accuracy. The discrepancy in ID and OOD
behavior compared to Cropland and Landcover underscores the importance of using real-world remote
sensing datasets in addition to synthetic datasets.

5 Conclusion
While auxiliary inputs improve in-distribution and OOD on standard curated datasets, they can
hurt OOD on real-world tasks important for addressing climate change. In contrast, using auxiliary
information as outputs by pretraining improves OOD performance. In-N-Out combines the strengths
of auxiliary inputs and outputs for further improvements. We note that the division between inputs
and auxiliary information is not well-defined. Our framework applies generally to any division of
the features, but an important further question is how to optimally choose what to use as auxiliary
information under distribution shifts.
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A Additional related works
Multi-task learning and weak supervision. Caruana and de Sa [8] proposed using poor input
features as a multi-task output, but do not theoretically analyze this. Wu et al. [51] also study multi-task
linear regression. However, their auxiliary tasks must have true parameters that are closely aligned
(small cosine distance) to the target task. Similarly, weak supervision works assume access to weak
labels correlated with the true label [36, 35]. In our paper, we make no assumptions about the alignment
of the auxiliary and target tasks beyond a shared latent variable while also considering distribution
shifts.

Transfer learning, pre-training, and self-supervision. We support empirical works that show
the success of transfer learning and pre-training in vision and NLP [26, 24, 12]. Theoretically, Du
et al. [13], Tripuraneni et al. [46] study pre-training in a similar linear regression setup. They show
in-distribution generalization bound improvements, but do not consider OOD robustness or combining
with auxiliary inputs. Hendrycks et al. [18] shows empirically that self-supervision can improve
robustness to synthetic corruptions. We show similar robustness benefits for pre-training on auxiliary
information (not part of the original input).

Self-training for robustness. [34] analyze robust self-training (RST) Carmon et al. [6], Najafi
et al. [33], Uesato et al. [47], which improves the tradeoff between standard and adversarially robust
accuracy, in min-norm linear regression. While related, we work in multi-task linear regression, study
pre-training, and prove robustness to arbitrary covariate shifts (rather than adversarial perturbations).
Kumar et al. [27] show that repeated self-training on gradually shifting unlabeled data can enable
adaptation over time. In-N-Out is complementary and may provide better pseudolabels in each step of
this method. Chen et al. [9] show that self-training can remove spurious features for Gaussian input
features in linear models, whereas our results hold for general input distributions (with density). Zoph
et al. [55] show that self-training and pre-training combine for in-distribution gains. We provide theory
to support this and also show benefits for OOD robustness.

Domain adaptation. Domain adaptation works account for covariate shift by using unlabeled data
from a target domain to adapt the model [42, 19, 14]. Often, these methods [42, 19] have a self-training
or entropy minimization component that benefits from having a better model in the target domain
to begin with. Similarly, domain adversarial methods [14] rely on the inductive bias of the source-only
model to correctly align the source and target distributions. In-N-Out may provide a better starting
point for these domain adaptation methods.

B Formal Setup
Let x∈Rd be the input (e.g., a satellite image), y ∈R be the target (e.g., crop type), and z ∈RT be
auxiliary information—typically low-dimensional semantically meaningful features (e.g., soil type).

Training data. Let Pid and Pood denote the underlying distribution of (x,y,z) triples in-distribution
and out-of-distribution, respectively. The training data consists of (i) in-distribution labeled
data {(xi, yi, zi)}ni=1 ∼ Pid, (ii) in-distribution unlabeled data {(xid

i , z
id
i )}m1

i=1 ∼ Pid, and (iii)
out-of-distribution unlabeled data {(xood

i ,zood
i )}m2

i=1∼Pood.

Loss metrics. Our goal is to learn a model from input and auxiliary information to the target,
f : Rd × RT → R. For a loss function `, the in-distribution population risk of the model f is
Rid(f)=Ex,y,z∼Pid [`(f(x,z),y)], and its OOD population risk isRood(f)=Ex,y,z∼Pood [`(f(x,z),y)].

B.1 Models
We consider three common ways to use the auxiliary information (z) to learn a model.

Baseline. The baseline minimizes the empirical risk on labeled data while ignoring the auxiliary
information (accomplished by setting z to 0):

f̂bs =argmin
f

n∑
i=1

`(f(xi,0),yi). (4)

Aux-inputs. The aux-inputs model minimizes the empirical risk on labeled data while using the
auxiliary information as features:

f̂in =argmin
f

n∑
i=1

`(f(xi,zi),yi). (5)
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Aux-outputs. The aux-outputs model leverages the auxiliary information z by using them as the
prediction targets of T auxiliary tasks, in hopes that there is a low-dimensional feature representation
that is common to predicting both z and y. Training the aux-outputs model consists of two steps:

In the pre-training step, we use all the unlabeled data to learn a shared feature representation. Let
h :Rd→Rk denote a feature map and gz

out :Rk→RT denote a mapping from feature representation
to the auxiliary outputs. Let `aux denote the loss function for the auxiliary information. We define
the empirical risk of h and gz

out as:

R̂pre(h,g
z
out)=

1

m1+m2

(m1∑
i=1

`aux(gz
out(h(xid

i )),zid
i )+

m2∑
i=1

`aux(gz
out(h(xood

i )),zood
i )
)
. (6)

The estimate of the feature map is ĥout =argminhmingz
out
R̂pre(h,g

z
out).

In the transfer step, the model uses the pre-trained feature map ĥout and the labeled data to learn the
mapping gy

out :Rk→R from feature representation to target y. We define the transfer empirical risk as:

R̂trans(ĥout,g
y
out)=

1

n

n∑
i=1

`(gy
out(ĥout(xi)),yi) (7)

The estimate of the target mapping is ĝy
out =argmingy

out
R̂trans(ĥout,g

y
out). The final aux-outputs model is

f̂out(x,z)= ĝy
out(ĥout(x)). (8)

Like the baseline model, the aux-outputs model ignores the auxiliary information for prediction.

C Theoretical Analysis of Aux-inputs and Aux-outputs Models
We now analyze the baseline, aux-inputs, and aux-outputs models introduced in Section 2. Our setup
extends a linear regression setting commonly used for analyzing multi-task problems [13, 46].

Setup. See Figure 3 for the graphical model. Letw=B?x∈Rk be a low-dimensional latent feature
(k≤d) shared between auxiliary information z and the target y. Let u∈Rm denote unobserved latent
variables not captured in x. We assume z and y are linear functions of u andw:

y=θ>ww+θ>u u+ε, (9)
z=A?w+C?u, (10)

where ε∼Pε denotes noise with mean 0 and variance σ2. As in [13], we assume T ≥ k and T ≥m
andA?,B? andC? have rank k.

Data. Let Px and Pu denote the underlying distribution of x and u in-distribution, and let P ′x, P ′u
denote their underlying distribution OOD. We assume x and u are independent, have bounded density
everywhere, and have finite invertible covariance matrices. We assume the mean of u is zero in-
and out-of-distribution2. We assume we have n≥m+d in-distribution labeled training examples
and unlimited access to unlabeled data both in- and out-of-distribution, a common assumption in
unsupervised domain adaptation [43, 27, 34].

Loss metrics. We use squared-error for target and auxiliary losses: `(ŷ, y) = (y − ŷ)2 and
`aux(z,z′)=‖z−z′‖22.

Models. We assume all model families (f , h, gz
out, g

y
out) in Section 2 are linear.

LetP=(A?,B?,C?,θw,θu,Px,Pu) denote the problem setting which satisfies all the assumptions.

C.1 Auxiliary inputs help in-distribution, but can hurt OOD
We show that the aux-inputs model (5) performs better than the baseline model (4) in-distribution
but might perform worse than the baseline model OOD. Intuitively, the target y depends on both the
inputs x (throughw) and latent variable u (Figure Figure 3). The baseline model only uses x to predict
y; thus it cannot capture the variation in y due to u. On the other hand, the aux-inputs model uses x
and z to predict y. Since z is a function of x (through w) and u, u can be recovered from x and z by
inverting this relation. The aux-inputs model can then combine u and x to predict y better.

Let σ2
u=Eu∼Pu

[(θ>u u)2] denote the (in-distribution) variance of y due to the latent variables u. The
following proposition shows that if σ2

u>0 then with enough training examples the aux-inputs model
has lower in-distribution population risk than the baseline model.3

2This is not limiting because bias in z can be folded into x.
3Since z is typically low-dimensional and x is high-dimensional (e.g. images), we only need a slightly larger

number of examples for the aux-inputs model before it outperforms the baseline.
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Proposition 1. For all problem settings P , Pε, assuming regularity conditions (bounded x, u,
sub-Gaussian noise ε, and T =m), and σ2

u>0, for all δ>0, there existsN such that for n≥N number
of training points, with probability at least 1−δ over the training examples, the aux-inputs model
improves over the baseline:

Rid(f̂in)<Rid(f̂bs) (11)

Although using z as input leads to better in-distribution performance, we show that the aux-inputs
model can perform worse than the baseline model in OOD for any number of training examples. The
aux-inputs model learns to predict ŷ= θ̂>x,inx+ θ̂>z,inz, where θ̂z,in is an approximation to the true
parameter θz , that has some error. Out-of-distribution u and hence z might have much higher variance
than x, which would magnify the error θ̂z,in−θz and lead to worse predictions.

Example 1. There exists a problem settingP , Pε, such that for every n, there is some test distribution
P ′x,P

′
u with:

E[Rood(f̂in)]>E[Rood(f̂bs)] (12)

C.2 Pre-training improves risk under arbitrary covariate shift
While using z as inputs can worsen performance relative to the baseline, our first main result is that
the aux-outputs model outperforms the baseline model under arbitrary covariate shifts.

Theorem 3. For all problem settingsP , Pε, and for all test distributions P ′x and P ′u:
E[Rood(f̂out)]≤E[Rood(f̂bs)] (13)

See Appendix E for full proof. Intuitively, pre-training by learning a low rank linear model from x to
z allows us to learn the lower dimensional feature spacew=B?x (up to symmetries). The aux-outputs
model learns a linear map from the lower-dimensionalw to y, while the baseline predicts y directly
from x. Without distribution shift, standard techniques show that the aux-outputs model has better risk
sincew is lower dimensional than x. In particular, the in-domain risk only depends on the dimension
but not on the conditioning of the data. In contrast, the worst case risk under distribution shift depends
on the conditioning of the data, which could be worse for w than x. Our proof shows that the worst
case risk (over all x and u) is still better for the aux-outputs model by “zeroing-out” error directions
when projecting to the low-dimensional feature representation.

D In-N-Out improves risk under arbitrary covariate shift
Setup. For the theory we analyze a slightly modified version of In-N-Out where the aux-inputs model
is trained on the features ĥout(x) and we self-train on population unlabeled data. We train an aux-inputs
model ĝin :Rk×RT →R given by ĝin = argming

1
n

∑n
i=1`(g(ĥout(xi),zi),yi). The self-training loss

is: Rst(g)= 1
n

∑n
i=1Ez∼Pz|xi

[`(g(ĥout(xi)),ĝin(ĥout(xi),zi))], and we learn ĝ=argmingRst(g). For
input x,z the model outputs ĝ(ĥout(x)). For the theory, we assume all model families are linear.

We show that In-N-Out helps on top of pre-training, as long as the auxiliary features give us lots of
information about y relative to the noise ε in-distribution—in particular, if σ2

u is much larger than σ2.

Theorem 4. In the linear setting, for all problem settingsP with σ2
u>0, test distributions P ′x,P

′
u, and

δ>0, there exists a,b>0 such that for all Pε, with probability at least 1−δ over the training examples
and test example x′∼P ′x, the ratio of the excess risks (for all σ2 small enough that a−bσ2>0) is:

Rood
in-out−R∗

Rood
out −R∗

≤ σ2

a−bσ2
(14)

Here R∗ = minf∗ Rood(f∗) is the minimum possible (Bayes-optimal) OOD risk,
Rood

in-out = Ey′∼P ′
y′|x′

[`(ĝ(ĥout(x
′)), y′)] is the risk of the In-N-Out model on test example x′,

andRood
out =Ey′∼P ′

y′|x′
[`(ĝy

out(ĥout(x
′)),y′)] is the risk of the aux-outputs model on test example x′.

Remark 1. As σ→ 0, the excess risk ratio of In-N-Out to Aux-outputs goes to 0, and the In-N-Out
estimator is much better than the aux-outputs estimator.

The proof of the result is in Appendix E, but we give high level intuition here. Since u can be recovered
from w and z, we can write y= γ>ww+γ>z z+ε. We train an aux-inputs model ĝin from w,z to y on
finite labeled data—since the noise σ2 = E[ε2] is small this model is very accurate. In the special
case where ε= 0, ĝin predicts y perfectly from w,z. For each training example wi, we sample many
z∼Pz|wi

and pseudolabel thewi,z examples (very accurately). We then minimize the mean-squared
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Figure 3: Graphical model for our theoretical setting, where auxiliary information z is related to targets
y through the latent variablew and latent noise u.

error, which is equivalent to predicting the mean ŷi of these pseudolabels from wi. This essentially
averages over latent noise u, so ŷi is a denoised version of yi. In the special case where ε= 0, the
pseudolabel ŷi=θ>ww (without the u term) so we learn the Bayes-opt model θw.

The technical challenge is proving that self-training helps under arbitrary covariate shift even when
ε>0 (the aux-inputs model is very accurate but not perfect). The proof reduces to showing that the
max singular value for the In-N-Out error matrix is less than the min-singular value of the aux-outputs
error matrix with high probability. A core part of the argument is to lower bound the min-singular value
of a random matrix (Lemma 4). This uses techniques from random matrix theory (see e.g Chapter
2.7 in Tao [45]), the high level idea is to show that with probability 1−δ each column of the random
matrix has a (not too small) component orthogonal to all other columns.

E Proof for Sections C and 3
Our theoretical setting assumes all the model families are linear. We begin by specializing the setup
in Section 2 and defining all the necessary matrices. A word on notation: if unspecified, expectations
are taken over all random variables.

Data matrices: We have finite labeled data in-distribution: n≥ d+m input examples X ∈Rn×d,
where each rowXi∼Px is an example sampled independently. We have an unobserved latent matrix:
U ∈Rn×m where each row Ui∼Pu is sampled independently. U is not used by any of the models,
but we will referenceU in our analysis. We have labels Y ∈Rn and auxiliary dataZ∈Rn×T , where
each row Yi,Zi is sampled jointly given input exampleXi,Ui, that is: Yi,Zi∼Py,z|Xi,Ui

.

E.1 Models and evaluation
Baseline: ordinary least squares estimator that uses x only, so θ̂x,ols=argminθ′‖Y −Xθ′‖2. Given
a test example x,z, the baseline method predicts f̂bs(x,z) = θ̂>x,olsx, ignoring z. In closed form,
θ̂x,ols=(X>X)−1X>Y .

Aux-inputs: least squares estimator using x and auxiliary z as input: θ̂x,in, θ̂z,in =

argminθ′x,θ′z ‖Y − (Xθ′x + Zθ′z)‖2. The input method predicts θ̂>x,inx + θ̂>z,inz for a test ex-
ample x,z. In closed form, lettingXZ =[X;Z], where we append the columns so thatXZ ∈Rn×(d+T ),
[θ̂x,in,θ̂z,in]=(XZ

>XZ)−1XZ
>Y

Aux-outputs: pretrains on predicting z from x on unlabeled data to learn a mapping from x tow, then
learns a regression model on top of this latent embedding w. In the pretraining step: use unlabeled
data to learn the feature-space embedding B̂:

Â,B̂=argmin
A,B

E
x∼Px

[‖ABx−z‖22] A∈RT×k,B∈Rk×d (15)

The transfer step solves a lower dimensional regression problem from w to y: θ̂w,out =

argminθ′w‖Y −XB̂
>θ′w‖2. Given a test example x, the output model predicts θ̂>w,outB̂x

11



In-N-Out: First learn an output model Â,B̂, and letW =XB̂> be the feature matrix. Next, train an
input model on the feature spacew so we get:

γ̂w,γ̂z=argmin
γ̂w,γ̂z

‖(Y −(Wγ̂w+Zγ̂z))
2‖ (16)

We now use the input model to pseudolabel our in-domain unlabeled examples, and self-train
a model without z on these pseudolabels. Given each point w, we produce a pseudolabel
Ez∼Pz|w [γ̂w

>w+ γ̂z
>z] = (γ̂w+A>γ̂z)

>w. We now learn a least squares estimator from w to the
pseudolabels which gives us the In-N-Out estimator θ̂w:

θ̂w= γ̂w+A>γ̂z (17)
Note that we do not actually have access toA, this is just the closed form for the final estimator that
self-training on the pseudolabels gives us. Given a test example x, In-N-Out predicts θ̂>w B̂x.

E.2 Auxiliary inputs help in-distribution
The proof of Proposition 1 is fairly standard. We first give a brief sketch, specify the additional regularity
conditions, and then give the proof. We lower bound the risk of the baseline by σ2

u+σ2 since this is
the Bayes-opt risk of using only x but not z to predict y. We upper bound the risk of the aux-inputs
model which uses x,z to predict y, which is the same as upper bounding the risk in random design
linear regression. For this upper bound we use Theorem 1 in Hsu et al. [20] (note that there are multiple
versions of this paper, and we specifically use the Arxiv version, e.g. available at https://arxiv.
org/abs/1106.2363). As such, we inherit their regularity conditions. In particular, we assume:

1. x,u are upper bounded almost surely. This is a technical condition, and can be replaced with
sub-Gaussian tail assumptions [20].

2. The noise ε is sub-Gaussian with variance parameter σ2.
3. The latent dimensionm and auxiliary dimension T are equal so that the inputs to the aux-inputs

model have invertible covariance matrix.4

Restatement of Proposition 1. For all problem settings P , Pε, assuming regularity conditions
(bounded x,u, sub-Gaussian noise ε, and T =m), and σ2

u>0, for all δ>0, there existsN such that
for n≥N number of training points, with probability at least 1−δ over the training examples, the
aux-inputs model improves over the baseline:

Rid(f̂in)<Rid(f̂bs) (18)

Proof. Lower bound risk of baseline: First, we lower bound the expected risk of the baseline by
σ2
u+σ2. Intuitively, this is the irreducible error—no linear classifier using only x can get better risk

than σ2
u +σ2 because of intrinsic noise in the output y. Let θx = B?>θw be the optimal baseline

parameters. We have:
Rid(f̂bs)= E

x,y,z∼Pid

[(y−θ̂>x,olsx)2] (19)

= E
x,u,ε∼Pid

[((θ>x x+θ>u u+ε)−θ̂>x,olsx)2] (20)

= E
x∼Pid

[(θ>x x−θ̂>x,olsx)2]+ E
u∼Pid

[θ>u u
2]+ E

ε∼Pid

[ε2] (21)

≥ E
u∼Pid

[θ>u u
2]+ E

ε∼Pid

[ε2] (22)

=σ2
u+σ2 (23)

To get Equation 21, we expand the square, use linearity of expectation, and use the fact that x,u,ε are
independent where u,ε are mean 0.

Upper bound risk of aux-inputs: On the other hand, we will show that if n is sufficiently large, the
expected risk of the input model is less than σ2

u+σ2.

First we show that we can write y = θ′>x x+ θ′>z z+ ε for some θ′x,θ
′
z , that is y is a well-specified

linear function of x and z plus some noise. Intuitively this is because y is a linear function of x,u
and sinceC? is invertible we can extract u from x,z. Formally, we assumed the true model is linear,
that is, y= θ>x x+θ>u u+ε. Since we have z =A?B?x+C?u where C? is invertible, we can write
u=C?−1(z−A?B?x). This gives us:

4x and u are independent, with invertible covariance matrices, and z=A?B?x+C?u where C? is full rank,
so by block Gaussian elimination we can see that [x,z] has invertible covariance matrix as well.
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y=θ>x x+θ>u u+ε (24)

=θ>x x+θ>u C
?−1(z−A?B?x)+ε (25)

=(θx−B?>A?>(C?>)−1θu)>x+(C?>)−1θ>u z+ε (26)

So setting θ′x=θx−B?>A?>(C?>)−1θu and θ′z=C?>
−1
θu, we get y=θ′>x x+θ′>z z+ε.

As before, we note that the total mean squared error can be decomposed into the Bayes-opt error plus
the excess error:

Rid(f̂in)= E
x,y,z∼Pid

[(y−θ̂>x,inx−θ̂>z,inz)2] (27)

= E
x,z,ε∼Pid

[((θ′>x x+θ′>z z+ε)−θ̂>x,inx−θ̂>z,inz)2] (28)

= E
x,z∼Pid

[(θ′>x x+θ′>z z−θ̂>x,inx−θ̂>z,inz)2]+ E
ε∼Pid

[ε2] (29)

= E
x,z∼Pid

[(θ′>x x+θ′>z z−θ̂>x,inx−θ̂>z,inz)2]+σ2 (30)

To get Equation 29, we expand the square, use linearity of expectation, and use the fact
that x, z, ε are independent with E[ε] = 0. So it suffices to bound the excess error,
EE=Ex,z∼Pid [(θ

′>
x x+θ′>z z−θ̂>x,inx−θ̂>z,inz)2].

To bound the excess error, we use Theorem 1 in Hsu et al. [20] where the inputs/covariates are [x,z].
E[[x,z][x,z]>] is invertible becausem=T ,C? is full rank, and Px,Pu have density everywhere with

density upper bounded so the variance in any direction is positive, and so the population covariance ma-
trix is positive definite. This means E[[x,z][x,z]>] has min singular value lower bounded, and we also
have that x, z are bounded random variables. Therefore, Condition 1 is satisfied for some finite ρ0. Con-
dition 2 is satisfied since the noise ε is sub-Gaussian with mean 0 and variance parameter σ2. Condition
3 is satisfied with b0 =0, since we are working in the setting of well-specified linear regression.

To apply Theorem 1 [20], we first choose t= log 3
δ so that 1−3e−t≥ 1−δ, and so the statement of

the Theorem holds with probability at least 1−δ. Since our true model is linear (or as Remark 9 says
that “the linear model is correct”), approx(x)=0.

So as per remark 9 [20] Equation 11, for some constant c′, we have an upper bound on the excess error
EE with probability at least 1−δ:

EE≤ σ
2(d+2

√
dt+2t)

n
+o(1/n) (31)

Note that the notation in Hsu et al. [20] is different. The learned estimator in ordinary least squares
regression is denoted by β̂0, the ground truth parameters by β, and the excess error is denoted by
‖β̂0−β‖Σ. See section 2.1, 2.2 of Hsu et al. [20] for more details.

Since t is fixed, there exists some constant c (dependent on δ) such that for large enoughN1 if n≥N1:
EE≤σ2(cd/n) (32)

Note that this is precisely Remark 10 [20]. Remark 10 says that ‖β̂0−β̄0‖Σ is within constant factors
of σ2d/n for large enough n. This is the variance term, but the bias term is 0 since the linear model
is well-specified so approx(x)=0. As in Propostion 2 [20] the total excess error is bounded by 2 times
the sum of the bias and variance term, which gives us the same result.

Putting this (Equation 32) back into Equation 30, we get that with probability at least 1−δ:
Rid(f̂in)≤σ2(1+cd/n) (33)

Since σ2
u>0, we have σ2<σ2

u+σ2. Then for someN and for all n≥N , we have:
Rid(f̂in)<σ2

u+σ2≤Rid(f̂bs) (34)
In particular, we can chooseN=max(N0,c

σ2

σ2
u
d+1). Which completes the proof.

E.3 Auxiliary inputs can hurt out-of-distribution
Restatement of Example 1. There exists a problem settingP , Pε, such that for every n, there is some
test distribution P ′x,P

′
u with:

E[Rood(f̂in)]>E[Rood(f̂bs)] (35)
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Proof. We will have x ∈ R (so d = 1), w = x, and u,z ∈ R2. We set z1 = u1 +w and z2 = u2, in
other words we choose A? = [1,0] and C? = I2 is the identity matrix. We set y = x+u1 + ε, with
ε∼N(0,σ2), so y is a function of x and u1 but not u2. In other words we choose θw=1 and θu=(1,0).
Px will be Uniform[−1,1], and Pu will be uniform in the unit ball in R2.

Let XZ = [X;Z], which denotes appending X and Z by columns so XZ ∈Rn×3 with n≥ 3. Since
Px and Pu have density, XZ has rank 3 almost surely. This means that XZ

>XZ is invertible (and
positive semi-definite) almost surely. Since Px and Pu are bounded, the maximum eigenvalue τ ′max
ofXZ

>XZ is bounded above. The minimum eigenvalue τmin of (XZ
>XZ)−1 is precisely 1/τ ′max

and is therefore positive and bounded below by some c>0 almost surely.

We will define P ′x and P ′u soon. For now, consider a new test example x′ ∼ P ′x, u
′ ∼ P ′u with

z′=[x′,0]+u′ and y′=x′+u′1+ε′ with ε′∼N(0,σ2) and E[u′]=0. For the input model we have:

E[Rood(f̂in)]=E[(y′−(θ̂>x,inx
′+θ̂>z,inz

′))2] (36)

=σ2(1+E[(x′,z′)>(XZ
>XZ)−1(x′,z′)]) (37)

≥σ2(1+E[τmin‖(x′,z′)‖22]) (38)

≥σ2(1+cE[‖(x′,z′)‖22]) (39)

≥σ2(1+cE[z′2
2
]) (40)

=σ2(1+cE[u′2
2
]) (41)

Notice that this lower bound is a function of E[u′2
2
] which we will make very large.

On the other hand, letting σ′u
2

=Eu′∼P ′u [(θ>u u
′)2]=Eu′∼P ′u [u′1

2
], for the baseline model we have:

E[Rood(f̂bs)]=E[(y′−θ̂>x,olsx′)2] (42)

=(σ2+σ′u
2
)+(σ2+σu

2)E[x′
>

(X>X)−1x′]) (43)

So the risk depends on x′ and E[u′1
2
] but not E[u′2

2
].

So we choose P ′x = Uniform(−1, 1). For P ′u, we sample the components independently, with
u′1 ∼ Uniform(−1,1), and u′2 ∼ Uniform(−R,R). By choosing R large enough, we can make the
lower bound for the input model arbitrarily large without impacting the risk of the baseline model
which gives us:

E[Rood(f̂in)]>E[Rood(f̂bs)] (44)

E.4 Pre-training improves risk under arbitrary covariate shift

Restatement of Theorem 3. For all problem settingsP , Pε, and for all test distributions P ′x and P ′u:

E[Rood(f̂out)]≤E[Rood(f̂bs)] (45)

First we show that pre-training (training a low-rank linear map from x to z) recovers the unobserved
features w. We will then show that learning a regression map from w to y is better in all directions
than learning a regression map from x to y.

Our first lemma shows that we can recover the map from x to w up to identifiability (we will learn
the rowspace of the true linear map from x tow).

Lemma 1. For a pair (x, z), let z = A?B?x + ξ where A? ∈ RT×k and B? ∈ Rk×d are the
true parameters with T, d ≥ k and ξ ∈ RT is mean-zero noise with bounded variance in each
coordinate. Assume that A?,B? are both rank k. Suppose that E[xx>] is invertible. Let Â,B̂ be
minimizers of the population risk E[‖ÂB̂x−z‖2] of the multiple-output regression problem. Then
span{B?1,...,B

?
k}=span{B̂1,...,B̂k}whereB?i,B̂i are the i-th rows of their respective matrices.
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Proof. We first consider solving for the product of the weights ÂB̂. The population risk can be
decomposed into the risks of the T coordinates of the output:

L(C)=E[‖Cx−z‖2] (46)

=E[‖Cx−A?B?x−ξ‖2] (47)

=E[‖(C−A?B?)x‖2]+E[‖ξ‖2] (48)

=

T∑
i=1

E[((Ci−(A?B?)i)x)2]+E[ξ2] (49)

=

T∑
i=1

Li(C) (50)

where E[‖ξ‖2] is the error of the Bayes optimal estimator, Ci, (A?B?)i denote the i-th row of
the respective matrices, and the i-th risk is Li(C) := E[((Ci − (A?B?)i)x)2] + E[ξ2]. From this
decomposition, we see that for every i,

(A?B?)i=argmin
Ci

Li(Ci) =⇒A?B?=argmin
C

L(C) (51)

such that A?B? is the unique minimizer of the population risk for the multiple-output regression
problem. The minimizer is unique since the minimizer for each subproblem is unique because E[xx>]
is invertible. Since the variance of ξ is bounded in each coordinate, with infinite data we achieve the
same minimizer of the multiple-output regression problem. Thus we have

ÂB̂=argmin
C

L(C)=A?B? (52)

so that the product of the learned parameters and the true parameters are equal.

From this, we see that Â,B̂ must be rank k, or else ÂB̂ 6=A?B?. Since Â is rank k, it has a left inverse
Â−1

left such that
B̂=QB? (53)

whereQ= Â−1
leftA

?∈Rk×k and Â−1
left =(Â>Â)−1Â>. Since Â−1

left is rank k andA? is rank k, we have
that the rank of the product is rank(Q) ≤ k. In the other direction, by Sylvester’s rank inequality,
rank(Q)≥ rank(Â−1

left )+ rank(A?)−k= k, which implies that Q is full rank (rank k). This implies
the result.

Before proving the theorem, it will be useful to state a version of the Woodbury inversion lemma.

Lemma 2 (Woodbury). For invertibleA∈Rd×d, invertibleC∈Rk×k, andD∈Rd×k,
(A+DCD>)−1 =A−1−A−1D(C−1+D>A−1D)−1D>A−1. (54)

Our next lemma shows that for any fixed training examples X and arbitrary test example x′, the
aux-outputs model will have better expected risk than the baseline where the expectation is taken over
the training labels Y |X .

Lemma 3. In the linear setting, fix data matrixX and consider arbitrary test example x′. Let θ?=
B?>θw be the optimal (ground truth) linear map fromx to y. The expected excess risk of the aux-outputs
model B̂>θ̂w,out is better than for the baseline θ̂x,ols, where the expectation is taken over the training
targets Y ∼PY |X (Y shows up implicitly because the estimators θ̂w,out and θ̂x,ols depend on Y ):

E[(θ̂>w,outB̂x
′−θ?>x′)2]≤E[(θ̂>x,olsx

′−θ?>x′)2] (55)

Proof. Let εall=Y −Xθ? be the training noise. From standard calculations, the instance-wise risk
of θ̂x,ols for any x is

E[(θ̂>x,olsx
′−θ?>x′)2]=E[(((X>X)−1X>Y )>x′−θ?>x′)2] (56)

=E[((θ?+(X>X)−1X>εall)
>x′−θ?>x′)2] (57)

=E[(((X>X)−1X>εall)
>x′)2] (58)

=(σ2+σ2
u)x′

>
(X>X)−1x′ (59)

By Lemma 1, B̂=QB for some full rankQ. Thus, learning θ̂w,out is a regression problem with indepen-
dent mean-zero noise and we can apply the same calculations for the instance-wise risk of B̂>θ̂w,out.

E[(θ̂>w,outB̂x
′−θ?>x′)2]=(σ2+σ2

u)x′
>
B̂>(B̂X>XB̂>)−1B̂x′. (60)
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We show that the difference between the inner matrices is positive semi-definite, which implies the
result. In particular, we show that

(X>X)−1−B̂>(B̂X>XB̂>)−1B̂<0. (61)

Multiplying the Woodbury inversion lemma on the left and right byA, we have the identity
A(A+DCD>)−1A=A−D(C−1+D>A−1D)−1D>. (62)

LettingA=(X>X)−1,C=αI , andD=B>, we have
(X>X)−1−B̂>(B̂X>XB̂>)−1B̂=A−D(D>A−1D)−1D> (63)

= lim
α→∞

A−D(
1

α
I+D>A−1D)−1D> (64)

= lim
α→∞

A(A+αDD>)−1A. (65)

where the last step applies Equation (62). The first limit converges by continuity of the inverse, and
the second limit converges since the elements of the sequence are identical to the first. For any α>0,
A+αDD> is a sum of PSD matrices and is thus PSD. SinceA is symmetric and PD, each element
of the limit sequence is PSD. Since the space of PSD matrices is closed, we have that the original
difference of matrices is PSD. This implies the result.

Proof of Theorem 3. Fix training examplesX and test example x′ but let the train labels Y ∼PY |X
and and test label y′ ∼ P ′y′|x′ be random. In particular, let σ′u

2
= E[(θ>u u

′)2] where u′ ∼ P ′u, with
E[u′]=0. Then for the baseline OLS estimator, we have:

E[(y′−θ̂>x,olsx′)2]=σ′u
2
+σ2+E[(θ̂>x,olsx

′−θ?>x′)2] (66)
For the aux-outputs model, we have:

E[(y′−θ̂>w,outB̂x′)2]=σ′u
2
+σ2+E[(θ̂>w,outB̂x

′−θ?>x′)2] (67)
So applying Lemma 3, we get that the risk for the aux-outputs model is better than for the baseline
(the lemma showed it for the excess risk):

E[(y′−θ̂>w,outB̂x′)2]≤E[(y′−θ̂>x,olsx′)2] (68)
Since this is true for allX and x′, it holds when we take the expectation over the training examples
X from Px and the test example x′ from P ′x which gives us the desired result.

E.5 In-N-Out improves risk under arbitrary covariate shift

Restatement of Theorem 4. In the linear setting, for all problem settings P with σ2
u > 0, test

distributions P ′x,P
′
u, and δ>0, there exists a,b>0 such that for all Pε, with probability at least 1−δ

over the training examples and test example x′ ∼ P ′x, the ratio of the excess risks (for all σ2 small
enough that a−bσ2>0) is:

Rood
in-out−R∗

Rood
out −R∗

≤ σ2

a−bσ2
(69)

Here R∗ = minf∗ Rood(f∗) is the minimum possible (Bayes-optimal) OOD risk,
Rood

in-out = Ey′∼P ′
y′|x′

[`(ĝ(ĥout(x
′)), y′)] is the risk of the In-N-Out model on test example x′,

andRood
out =Ey′∼P ′

y′|x′
[`(ĝy

out(ĥout(x
′)),y′)] is the risk of the aux-outputs model on test example x′.

We first show a key lemma that lets us bound the min singular values of a random matrix, which will let
us upper bound the risk of the In-N-Out estimator and lower bound the risk of the pre-training estimator.

Definition 1. As usual, the min singular value τmin(W ) of a rectangular matrixW ∈Rn×k where
n≥ k refers to the k-th largest singular value (the remaining n−k singular values are all 0), or in
other words:

τmin(W )= min
‖ν‖2=1

‖Wν‖2 (70)

Lemma 4. Let Pw and Pu be independent distributions on Rk and Rm respectively. Suppose they are
absolutely continuous with respect to the standard Lebesgue measure on Rk and Rm respectively (e.g.
this is true if they have density everywhere with density upper bounded). LetW ∈Rn×k where each row
Wi is sampled independentlyWi∼Pw. LetU ∈Rn×m where each rowUi is sampled independently
Ui∼Pu. Suppose n≥k+m. For all δ, there exists c(δ)>0 such that with probability at least 1−δ, the
minimum singular values τmin are lower bounded by c(δ): τmin(W )>c(δ) and τmin([W ;U ])>c(δ).
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Proof. We note that the matricesW andU are rectangular, e.g. W ∈Rn×k where n≥k. We will prove
the lemma forW first, and the extension to [W ;U ] will follow.

Note that removing the last n − k rows of W cannot increase its min singular value since that
corresponds to projecting the vector Wν and projection never increases the Euclidean norm. So
WLOG we supposeW only consists of its first k rows and soW ∈Rk×k.

Now, consider any row Wi. We will use a volume argument to show that with probability at least
1− δ

d , this rowWi has a non-trivial component perpendicular to all the other rows. Since all rows are
independently and identically sampled, without loss of generality suppose i=1. Fix the other rows
w2,...,wk, sincew1 is independent of these other rows, the conditional distribution ofw1 is the same
as the marginal ofw1. w2,...,wk form a k−1 dimensional subspace S in Rk. Letting d(w,S) denote
the Euclidean distance of a vectorw from the subspace S, define the event Sλ={w1 :d(w1,S)≤λ}.
Since Pw is absolutely continuous, P (Sλ)→ 0 as λ→ 0, so for some small c(δ)> 0, P (Sc(δ))<

δ
d .

So with probability at least 1−δ/d, d(w1,S)>c(δ).

By union bound, with probability at least 1−δ, this is true for every rowwi—condition on the event
that this is true. By representing each row vector as the sum of the component perpendicular to the
subspace of the other vectors, and a component along the subspace, and applying Pythagoras theorem
and expanding we get:

min
‖ν‖2=1

‖Wν‖= min
‖ν‖2=1

‖ν>W‖≥c(δ) (71)

Which completes the proof for τmin(W ).

For [W ;U ], we note that Px and Pu are independent, and the product measure is absolutely continuous.
Since each row of [W ;U ] is identically and independently sampled just like with W , we can apply
the exact same argument as above (though for a different constant c(δ), we take the min of these two
as our c(δ) in the lemma statement).

Recall that the In-n-Out estimator was obtained by fitting a model fromw,z to y, and then using that
to produce pseudolabels on (infinite) unlabeled data, and then self-training a model from w to y on
these pseudolabels. For the linear setting, we defined the In-N-Out estimator θ̂w in Equation 17. Our
next Lemma gives an alternate closed form of the In-N-Out estimator in terms of the representation
matrixW =XB̂ and the latent matrixU .

Lemma 5. In the linear setting, lettingW =XB̂> we can write the In-n-Out estimator in closed form
as:

θ̂w=[Ik×k;0k×T ]
((

W>

U>

)
(W ;U)

)−1
(
W>

U>

)
Y (72)

Proof. We recall the definition of the In-N-Out estimator, where we first train a classifier fromW,Z
to Y .

γ̂w,γ̂z=argmin
γ̂w,γ̂z

‖(Y −(Wγ̂w+Zγ̂z))
2‖ (73)

Denote the minimum value of Equation 73 by p∗. Note that γ̂w,γ̂z may not be unique, and we pick any
solution to the argmin (although our proof will reveal that the resulting θ̂w is in fact unique). We then
use this to produce pseudolabels and self-train, on infinite data, which gives us the In-N-Out estimator:

θ̂w= γ̂w+A>γ̂z (74)
We will now consider the following alternative estimator:

θ̂′w,θ̂
′
u=argmin

θ̂′w,θ̂
′
u

‖(Y −(Wθ̂′w+Uθ̂′u))2‖ (75)

Denote the minimum value of Equation 75 by q∗. We claim that θ̂′w= θ̂w.

We will show that the In-N-Out estimator θ̂w minimizes the alternative minimization problem in
Equation 75 by showing that p∗= q∗. We will then show that the solution to Equation 75 is unique,
which implies that θ̂′w= θ̂w.

We note thatC?>∈Rm×T where T ≥m is full-rank, so there exists a right-inverseC ′ withC?>C ′=
Im×m. SinceZ=WA?>+UC?>, this gives us: U=(Z−WA?>)C ′=ZC ′+W (−A?>C ′).
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So this means that a solution to the alternative problem in Equation 75 can be converted into a solution
for the original in Equation 73 with the same function value:

min
θ̂′w,θ̂

′
u

‖(Y −(Wθ̂′w+Uθ̂′u))2‖ (76)

= min
θ̂′w,θ̂

′
u

‖(Y −(Wθ̂′w+(ZC ′+W (−A?>C ′))θ̂′u))2‖ (77)

= min
θ̂′w,θ̂

′
u

‖(Y −(W (θ̂′w−A?
>C ′θ̂′u)+Z(C ′θ̂′u)))2‖ (78)

This implies that p∗≤q∗.
We now show that a solution to the original problem in Equation 73 can be converted into a solution
for the alternative in Equation 75 with the same function value:

min
γ̂w,γ̂z

‖(Y −(Wγ̂w+Zγ̂z))
2‖ (79)

= min
γ̂w,γ̂z

‖(Y −(Wγ̂w+(WA?>+UC?>)γ̂z))
2‖ (80)

= min
γ̂w,γ̂z

‖(Y −(W (γ̂w+A?>γ̂z)+U(C?>γ̂z)))
2‖ (81)

This implies that q∗≤p∗, and we showed before that p∗≤q∗ so p∗=q∗. But since γ̂w,γ̂z minimizes
the original minimizer in Equation 73, γ̂w +A?>γ̂z,C

?>γ̂z minimize the alternative problem in
Equation 75, where θ̂w= γ̂w+A?>γ̂z .

Since [W ;U ] is full rank, the solution θ̂′w,θ̂′u to the alternative estimator Equation 75 is unique. So
this means that θ̂′w= θ̂w.

We have shown that θ̂′w = θ̂w—this completes the proof because solving Equation 75 for θ̂′w gives
us the closed form in Equation 72.

Next we show a technical lemma that says that if a random vector u∈Rn has bounded density every-
where, then for any v with high probability the dot product (u>v)2 cannot be too small relative to ‖v‖22.

Lemma 6. Suppose a random vector u∈Rn has density everywhere, with bounded density. For every
δ, there exists some c(δ) such that for all v, with probability at least 1−δ over u, (u>v)2≥c(δ)‖v‖22.

Proof. First, we choose someB0 such thatP (‖u‖2≥B0)≤δ/2, such aB0 exists for every probability
measure.

Suppose that the density is upper bounded byB1. Let the area of the n−1 dimensional sphere with
radiusB0 beA0. Consider any n−1 dimensional subspace S, and let Sε={u′ :d(u′,S)≤λ}where
d(u′,S) denotes the Euclidean distance from u′ to S. P (u∈S)≤A0B1ε+δ/2 for all S. By choosing
sufficiently small ε>0, we can ensure that P (u∈S)≤δ for all S.

Now consider arbitrary v and let S(v) be the n− 1-dimensional subspace perpendicular to v. We
have P (u∈S(v)ε)≤ δ. But this means that (u>v)2≥ ε2‖v‖22 with probability at least 1−δ, which
completes the proof.

By definition of our linear multi-task model, we recall that y=θ>ww+θ>u u+ε, wherew=B?x. We
do not have access to B?, but we assumed that B? is full rank. We learned B̂ which has the same
rowspace asB? (Lemma 1). This means that for some θ′w, we have y=θ′>w ŵ+θ>u u+εwhere ŵ=B̂x.
To simplify notation and avoid using θ′w and ŵ everywhere, we suppose WLOG that B̂ =B? (but
formally, we can just replace all the occurrences of θw by θ′w andw by ŵ).

Our next lemma lower bounds the test error of the pre-training model.

Lemma 7. In the linear setting, for all problem settings P with σ2
u> 0, for all δ, there exists some

a,b>0 such that with probability at least 1−δ over the training examples and test example x′∼P ′x
the risk of the aux-outputs model is lower bounded:

Rood
out −R∗>a−bσ2 (82)
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Proof. Recall that Rood
out = Ey′∼P ′

y′|x′
[l(f̂out(ĥout(x

′)),y′)]. Let σ′u
2

= Eu′∼P ′u [(θ>u u
′)2]. We have

R∗=σ2+σ′u
2. LetW =XB?> be the feature matrix, whereW ∈Rn×k.

Lettingw′=B?x′, for the aux-outputs model, we have:
E

y′∼P ′
y′|x′

[l(f̂out(ĥout(x
′)),y′)] (83)

= E
y′∼Py′|x′

[(y′−θ̂>w,outw′)2] (84)

=(σ2+σ′u
2
)+(θ>ww

′−θ̂>w,outw′)2 (85)

=R∗+(θ>ww
′−θ̂>w,outw′)2 (86)

Let ε=Y −(Wθw+Uθu) be the noise of Y for the training examples, which is a random vector with
ε∈Rn. We can now write:

(θ>ww
′−θ̂>w,outw′)2 =((ε+Uθu)>W (W>W )−1w′)2 (87)

By assumption,W>W is invertible (almost surely). With probability at least 1−δ/10 all entries of
W>W are upper bounded and we condition on this. So (W>W )−1 has min singular value bounded be-
low. By Lemma 4,W has min singular value that is bounded below with probability at least 1−δ/10, we
condition on this being true. So let ν=W (W>W )−1w′, so for some c0>0, we have: ‖ν‖2≥c0‖w′‖2.

In terms of ν, we can write Equation 87 as:
(θ>ww

′−θ̂>w,outw′)2 =((ε+Uθu)>ν)2 (88)

=(ε>ν)2+((Uθu)>ν)2+2(ε>ν)((Uθu)>ν) (89)

≥((Uθu)>ν)2+2(ε>ν)((Uθu)>ν) (90)

≥((Uθu)>ν)2−2|ε>ν|‖(Uθu)>‖2‖ν‖2) (91)

We can find b0 such that with at least probability 1−δ/10, ‖(Uθu)>‖2≤ b0, condition on this. We
note that ε>ν has variance σ2‖ν‖2 so by Chebyshev for some b1 with probability at least 1− δ,
|ε>ν|≤b1σ2‖ν‖2, condition on this. So we can now bound Equation 91 and get:

(θ>ww
′−θ̂>w,outw′)2≥((Uθu)>ν)2−2b0b1σ

2‖ν‖22 (92)

Now we apply Lemma 6, where we use the fact that σ2
u>0. So given δ/10, there exists some c1 such

that for every ν with probability at least 1−δ/10, ((Uθu)>ν)2≥c1‖ν‖22, giving us:
(θ>ww

′−θ̂>w,outw′)2≥(c1−2b0b1σ
2)‖ν‖22 (93)

Sincew′ has bounded density everywhere, it is non-atomic and we get that there is some c2>0 such
that with probability at least 1−δ/10, ‖w′‖22≥c22. But then ‖ν‖22≥c0c2, which gives us for some a,b:

(θ>ww
′−θ̂>w,outw′)2≥(c1−2b0b1σ

2)c0c2≥a−bσ2 (94)
Combining this with Equation 86, we get with probability at least 1−δ:

E
y′∼P ′

y′|x′

[l(f̂out(ĥout(x
′)),y′)]−R∗>a−bσ2 (95)

Which was what we wanted.

Lemma 8. In the linear setting, for all problem settings P , for all δ, there exists some c > 0 such
that with probability at least 1−δ over the training examples and test example x′∼P ′x the risk of the
In-N-Out model is upper bounded:

Rood
in-out−R∗<cσ2 (96)

Proof. Recall that Rood
in-out = Ey′∼P ′

y′|x′
[l(f̂out(ĥout(x

′)),y′)]. Let σ′u
2

= Eu′∼P ′u [(θ>u u
′)2]. We have

R∗=σ2+σ′u
2. As before, letW =XB?> be the feature matrix, whereW ∈Rn×k.

LetWU =[W ;U ] which denotes concatenating the matrices by column, so thatWU ∈Rn×(k+m). By
Lemma 4,WU

>WU has min singular value that is bounded below by c0 with probability at least 1−
δ/10, we condition on this being true. Now, as for the aux-outputs model, lettingw′=B?x′, we have:

E
y′∼Py′|w′

[(y′−θ̂>ww′)2]=R∗+(θ>ww
′−θ̂>ww′)2 (97)
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For the second term on the RHS: Let R= [Ik×k;0k×m]. Let ε= Y −(Wθw+Uθu) be the noise of
Y for the training examples, which is a random vector with ε∈Rn. We can now write:

(θ>ww
′−θ̂>ww′)2 =(w′>R(WU

>WU )−1WU
>ε)2 (98)

‖w′‖2 is bounded above by some constantB1 with probability at least 1−δ/10 which we condition
on. Now taking the expectation over w′ and ε, using the fact that R preserves the norm of a vector
we can write:

E
w′,ε

[(w′>R(WU
>WU )−1WU

>ε)2] (99)

=σ2 E
w′,ε

[(w′>R[WU
>WU ]−1RTw′)] (100)

≤ σ
2

c20
E
w′

[‖w′‖22] (101)

≤ B
2
1σ

2

c20
(102)

Then, by Markov’s inequality, with probability at least 1−δ/10 we can upper bound this by 10B2
1σ

2

δc20
.

In total, that gives us that for some c, with probability at least 1−δ:
E

y′∼P ′
y′|x′

[l(f̂out(ĥout(x
′)),y′)]−R∗<cσ2 (103)

The proof of Theorem 4 simply combines Lemma 7 and Lemma 8.

Proof of Theorem 4. For some a,b,c, with probability at least 1−δ, we have for the aux-outputs model:
Rood

out −R∗>a−bσ2 (104)
And for the In-N-Out model:

Rood
in-out−R∗<cσ2 (105)

Taking ratios and dividing by suitable constants we get the desired result.

F Experimental details
Data splits. In all experiments we first split off the OOD data, then randomly split the rest into
training, validation, and in-distribution test. We use a portion of the training and OOD set as
in-distribution and OOD unlabeled data respectively. The rest of the OOD set is held-out. We run
5 trials, where we regenerate the training/unlabeled split for each trial (keeping held-out splits fixed).
We use a reduced number of labeled examples from each dataset (1%, 5%, 10% of labeled examples
for CelebA, Cropland, and Landcover respectively), with the rest as unlabeled.

F.1 Cropland
All models reported in Table 1 were trained using the Adam optimizer with learning rate 0.001, a
batch size of 256, and 100 epochs unless otherwise specified. Our dataset consists of about 7k labeled
examples, 170k unlabeled examples (with 130k in-distribution examples), 7.5k examples each for
validation and in-distribution test, and 4260 OOD test examples (the specification of OOD points is
described in further detail below). Results are reported over 5 trials, and λ∈ {0.5,0.6,0.7,0.8,0.9}
was chosen using the validation set.

Problem Motivation. Developing machine learning models trained on remote sensing data is
currently a popular line of work for practical problems such as typhoon rainfall estimation, monitoring
reservoir water quality, and soil moisture estimation [29, 32, 1]. Models that could use remote sensing
data to accurately forecast crop yields or estimate the density of regions dedicated to growing crops
would be invaluable in important tasks like estimating a developing nation’s food security [30].

OOD Split. In remote sensing problems it is often the case that certain regions lack labeled data
(e.g., due to a lack of human power to gather the labels on site), so extrapolation to these unlabeled
regions is necessary. To simulate this data regime, we use the provided (lat, lon) pairs of each data
point to split the dataset into labeled (in-distribution) and unlabeled (out-of-distribution) portions.
Specifically, we take all points lying in Iowa, Missouri, and Illinois as our ID points and use all points
within Indiana and Kentucky as our OOD set.
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Shape of auxiliary info. To account for the discrepancy in shapes of the two sources of auxiliary
information (latitude and longitude are two scalar measurements while the 3 vegetation bands form
a 3×50×50 tensor), we create latitude and longitude “bands” consisting of two 50×50 matrices that
repeat the latitude and longitude measurement, respectively. Concatenating the vegetation bands and
these two pseudo-bands together gives us an overall auxiliary dimension of 5×50×50.

UNet. Since our auxiliary information takes the form of 50×50 bands, we need a model architecture
that can reconstruct these bands in order to implement the aux-outputs and the In-N-Out models. With
this in mind, we utilize a similar UNet architecture that Wang et al. [49] use on the same Cropland
dataset. While the UNet was originally proposed by Ronneberger et al. [39] for image segmentation,
it can be easily modified to perform image-to-image translation. In particular, we remove the final 1×1
convolutional layer and sigmoid activation that was intended for binary segmentation and replace them
with a single convolutional layer whose output dimension matches that of the auxiliary information.
In our case, the last convolutional layer has an output dimension of 5 to reconstruct the 3 vegetation
bands and (lat,lon) coordinates.

To perform image-level binary classification with the UNet, we also replace the final 1×1 convolutional
layer and sigmoid activation, this time with a global average pool and a single linear layer with an
output dimension of 1. During training we apply a sigmoid activation to this linear layer’s output to
produce a binary class probability, which is then fed into the binary cross entropy loss function.

Aux-inputs model. Since the original RGB input image is 3×50×50, we can simply concatenate
the auxiliary info alongside the original image to produce an input of dimensions 8×50×50 to feed
into the UNet.

Aux-outputs model. The modification of the traditional UNet architecture in order to support aux-
iliary outputs for Cropland is described in the above UNet section. We additional add a tanh activation
function to squeeze the model’s output values to the range [−1,1] (the same range as the images). We
train the model to learn the auxiliary bands via pixel-wise regression using the mean squared error loss.

In-N-Out model. We found that the finetuning phase of the In-N-Out algorithm experienced wild
fluctuations in loss and would not converge when using the hyperparameters listed at the top of this
section. To encourage the model to converge and fit the training set, we decreased the Adam learning
rate to 0.0001 and doubled the batch size to 512.

Repeated self-training. For the additional round of self-training, we initialize training and
pseudolabel all unlabeled data with the In-N-Out model. Following [27], we employ additional
regularization when doing self training by adding dropout with probability 0.8.

F.2 Landcover
Our Landcover dataset comes from NASA’s MODIS Surface Reflectance product, which is made
up of measurements from around the globe taken by the Terra satellite [48]. In each trial, we use about
16k labeled examples from non-African locations, 203k unlabeled examples (with 150k in-distribution
examples), 9266 examples each for validation and in-distribution test, and 4552 OOD test examples.
We trained with SGD + momentum (0.9) on all models for 400 epochs with a cosine learning rate
schedule. We used learning rate 0.1 for all models that were not pre-trained, and learning rate 0.01 for
models that were already pre-trained. Results are reported over 5 trials, and λ∈{0.1,0.3,0.5,0.7,0.9}
was chosen using the validation set.

1D CNN While Convolutional Neural Networks are most commonly associated with the ground-
breaking success of 2D-CNNs on image-based tasks, the 1-dimensional counterparts have also found
success in various applications [25]. Because the measurements from the MODIS satellite are not
images but instead scalar-valued time series data, we can use a 1D CNN with 7 channels, one for each
of the 7 MODIS sensors.

NDVI The normalized difference vegetation index (NDVI) is a remote sensing measurement
indicating the presense of live green vegetation. It has been shown to be a useful predictor in
landcover-related tasks [11, 10, 31], so we choose to include it in our models as well. NDVI can be
computed from the RED and NIR bands of the MODIS sensors via the equation

NDVI=(NIR−RED)/(NIR+RED). (106)

We include NDVI along with the 7 other MODIS bands to give us input dimensions of 46×8.
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ERA5 It is a reasonable hypothesis that having additional climate variables such as soil type or
precipitation could be useful for a model in inferring the underlying landcover class. To this end we
incorporate features from the ERA5 climate dataset as our auxiliary information [4]. The specific
variables we include are soil type, temperature, precipitation rate, precipitation total, solar radiation,
and cloud cover. For each MODIS point we find its nearest ERA5 neighbor based on their latitude
and longitude in order to pair the datasets together.

The ERA5 measurements are monthly averages, which means the readings are at a different
frequency than that of the 8-day MODIS time series. We upsample the ERA5 signal using the
scipy.signal.resample method, which uses the FFT to convert to the frequency domain, adds
extra zeros for upsampling to the desired frequency, and then transforms back into the time domain.

Landcover classes. The Landcover dataset has a total of 16 landcover classes, with a large variance
in the individual class counts. To ensure our model sees enough examples of each class, we filtered
the dataset to include just 6 of the most populous classes: savannas, woody_savannas, croplands,
open_shrublands, evergreen_broadleaf_forests, and grasslands.

Aux-inputs model. We concatenate the resampled ERA5 readings with the MODIS and NDVI
measurements to obtain an input dimension of 46×14.

Aux-outputs model. Rather than predicting the entire ERA5 time series as an auxiliary output,
we instead average the 6 climate variables over the time dimension and predict those 6 means as the
auxiliary outputs. We use a smaller learning rate of 0.01 for this pre-trainined model.

In-N-Out and Repeated self-training. The In-N-Out model initializes its weights from the
aux-outputs model and gets pseudolabeled ID unlabeled data from the aux-inputs model. As with
aux-outputs, we use a smaller learning rate of 0.01 for this pre-training model.

For the additional round of self-training, we initialize training and pseudolabel all unlabeled data with
the In-N-Out model. Following [27], we employ additional regularization when doing self training
by adding dropout with probability 0.5. We found that with dropout, we need a higher learning rate
(0.1) to effectively fit the training set.

F.3 CelebA
For the results in Table 1, we used 7 auxiliary binary attributes included in the
CelebA dataset: ['Bald', 'Bangs', 'Mustache', 'Smiling', '5_o_Clock_Shadow',
'Oval_Face', 'Heavy_Makeup']. These attributes tend to be fairly robust to our distribution shift
(not hat vs. hat) — if the person has a 5 o’clock shadow, the person is likely a man. We use a subset
of the CelebA dataset with 2000 labeled examples, 30k in-distribution unlabeled examples, 3000
OOD unlabeled examples, and 1000 validation, in-distribution test, and OOD test examples each.
The backbone for all models is a ResNet-18 [16] which takes a CelebA image downsized to 64×64
and outputs a binary gender prediction. All models are trained for 25 epochs using SGD with cosine
learning rate decay, initial learning rate 0.1, and early stopped with an in-distribution validation set.
The gender ratios in the in-distribution and OOD set are balanced to 50-50.

Aux-inputs model. We incorporate the auxiliary inputs by first training a baseline model f̂bs
from images to output logit, then training a logistic regression model on the concatenated features
[f̂bs(x);z] where z are the auxiliary inputs. We sweep over L2 regularization hyperparameters C=
[0.1,0.5,1.0,5.0,10.0,20.0,50.0] and choose the best with respect to an in-distribution validation set.

Aux-outputs model. During pretraining, the model trains on the 7-way binary classification task
of predicting the auxiliary information. Then, the model is finetuned on the gender classification task
without auxiliary information.

In-N-Out and repeated self-training. For In-N-Out models with repeated self-training, we
pseudolabeled all the unlabeled data using the In-N-Out model and did one round of additional
self-training. Following [27], we employ additional regularization when doing self training by adding
dropout with probability 0.8. We also reduced the learning rate to 0.05 to improve the training dynamics.

Adding auxiliary inputs one-by-one. In Figure 5, we generate a random sequence of 15
auxiliary inputs and add them one-by-one to the model, retraining with every new configuration.
We use the following auxiliary information: 'Young', 'Straight_Hair', 'Narrow_Eyes',
'Mouth_Slightly_Open', 'Blond_Hair', '5_o_Clock_Shadow', 'Big_Nose', 'Oval_Face',
'Chubby', 'Attractive', 'Blurry', 'Goatee', 'Heavy_Makeup', 'Wearing_Necklace', and
'Bushy_Eyebrows'.
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Figure 4: Correlation (r2 = 0.52) between in-distribution accuracy and out-of-distribution (OOD)
accuracy when adding 1 to 15 random auxiliary features as input in CelebA.
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Figure 5: In-distribution vs. OOD accuracy when
sequentially adding a random set of 15 auxiliary in-
puts one-by-one. While more auxiliary inputs gen-
erally improves both in-distribution and OOD ac-
curacy, some in-distribution gains can hurt OOD.

ID Test Acc OOD Test Acc

Only in-distribution 69.73± 0.51 57.73± 1.58
Only OOD 69.92± 0.41 59.28± 1.01
Both 70.07± 0.46 59.84± 0.98

Table 2: Ablation study on the use of in-
distribution vs. OOD unlabeled data in
pre-training models on Landcover, where unla-
beled sample size is standardized (much smaller
than Table 1). Using OOD unlabeled examples are
important for gains in OOD accuracy (%). Results
are shown with 90% error intervals over 5 trials.

Correlation between in-distribution and OOD accuracy. In Figure 4, we sample 100 random
sets of auxiliary inputs of sizes 1 to 15 and train 100 different aux-inputs models using these auxiliary
inputs. We plot the in-distribution and OOD accuracy for each model, showing that there is a significant
correlation between in-distribution and OOD accuracy in CelebA, supporting results on standard
datasets [37, 53, 41]. Each point in the plot is an averaged result over 5 trials.

G Additional Experiments
G.1 Choice of auxiliary inputs matters
We find that the choice of auxiliary inputs affects the tradeoff between ID and OOD performance
significantly, and thus is important to consider for problems with distribution shift. While Figure 4
shows that auxiliary inputs tend to simultaneously improve ID and OOD accuracy in CelebA, our theory
suggests that in the worst case, there should be auxiliary inputs that worsen OOD accuracy. Indeed,
Figure 5 shows that when taking a random set of 15 auxiliary inputs and adding them sequentially as
auxiliary inputs, there are instances where an extra auxiliary input improves in-distribution but hurts
OOD accuracy. In cropland prediction, we compare using location coordinates and vegetation data as
auxiliary inputs with only using vegetation data. The model with locations achieves the best ID perfor-
mance, improving almost 1% in-distribution over the baseline with only RGB. Without locations, the
ID accuracy is similar to the baseline but the OOD accuracy improves by 1.5%. In this problem, location
coordinates help with in-distribution interpolation, but the model fails to extrapolate on locations.

G.2 OOD unlabeled data is important for pretraining
We compare the role of in-distribution vs. OOD unlabeled data in pretraining. Table 2 shows the results
of using only in-distribution vs. only OOD vs. a balanced mix of unlabeled examples for pretraining
on the Landcover dataset, where unlabeled sample size is standardized across the models (by reducing
to the size of the smallest set, resulting in 4x less unlabeled data). Using only in-distribution unlabeled
examples does not improve OOD accuracy, while having only OOD unlabeled examples does well
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both in-distribution and OOD since it also has access to the labeled in-distribution data. For the same
experiment in cropland prediction, the differences were not statistically significant, perhaps due to
the smaller geographic shift (across states in cropland vs. continents in landcover).
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