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The Smart Building Paradigm

* Energy Consumption of buildings, both residential and commercial, account for
approximately 40% of all energy usage in the U.S.

» Achieving energy efficiency in buildings is crucial

« Methods for achieving energy efficiency:
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allow occupants to provide feedback about their
' surrounding and the system will take the feedback int¢
consideration.

Source: Singapore Berkeley Building Efficiency and Sustainability in the Tropics (SinBerBEST) www.sinberbest.berkeley.edu
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Energy Game-Theoretic Framework

Incentivize occupants to modify their behavior in a competitive game setting so
that the over-all energy consumption in the building is reduced.
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Utility learning is hard

To efficiently decide incentive for each occupant/player in the game, we need
to know their utility function (preference towards energy usage)

Individual Utility learning is hard
« Number of players is high

* Quality data for each player
unavailable

« Human behavior resulting in
utility function has high variance
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Our Proposal: Segment the energy usage behavior of players into finite clusters.
Under the assumption that players in a cluster will behave synchronously.




e
Supervised vs. Unsupervised Segmentation

Supervised Segmentation Unsupervised Segmentation

» Requires a supervision signal: we use
rank of player
« Segments players as a whole into

different classes BOL T IS 112

== = Player with low rank (more energy efficient)
=== Player with high rank (less energy efficient)
1

« No supervision required

« Segments energy usage behaviors
into different clusters
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Our Approach: A hybrid segmentation method




Tool for proposed segmentation: Graphical Lasso

Graphical Lasso is a sparse penalized maximum likelihood estimator

Features (Y) are associated with the vertex set V = {1,2, ..., S} of some underlying
graph.

The structure of the graph is utilized to derive inferences about the relationship
between the features.

For undirected graphical models, node for Ys is conditionally independent of
nodes not directly connected to it given Yy, s. So the predictor for Ys is written as,

Y, =YV, + Wi,

The (° terms dictate the edge set for node s in the
graph. Obtain %, by solving the lasso problem s
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Proposed Segmentation Method
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e
Social Game Dataset

Energy Social Game time-stamped data in per-minute resolution:
1. Resource (Ceiling/Desk Light, Fan, A/C) Status

2. Gathered points (from games and surveys)

3. Rank in the game

4. Frequency of visit to web portal

5. Weather metric such as humidity, temperature and solar radiation

6. Dummy features: Weekdays/Weekends/Midterms/Breaks/Finals

Ref: “Design, Benchmarking and Explainability Analysis of a Game-Theoretic Framework towards Energy Efficiency in Smart

Infrastructure”, I. C. Konstantakopoulos, H. P. Das, A. R. Barkan, S. He, T. Veeravalli, H. Liu, A. B. Manasawala, Y. Lin and C. J.
Spanos, arXiv preprint arXiv:1910.07899, 2019




Feature Correlation Learning using Graphical Lasso
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Feature Correlation Learning using Graphical Lasso
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Feature Correlation Learning using Graphical Lasso
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Causality Analysis using Grangers Causality

Enhances the explainability nature of our model

Labelled clusters
can be used for
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downstream tasks,
such as intelligent
incentive design

Test whether X causes Y | Fan = Ceiling Light Humidity = Fan Desk Light = Fan Ceiling Light = Desk Light
Player type p-value | F-statistic | p-value | F-statistic | p-value | F-statistic | p-value F-statistic
Low Energy Efficient 0.54 0.37 0.004 8.12 0.06 3.55 0.81 0.06
Medium Energy Efficient 0 21.2 0.008 7.06 0 113.6 0 25.8
High Energy Efficient 0 219 0.12 2.36 0.99 0.003 0.93 0.007
Afternoon = Fan Evening = Ceiling Light
Under null-hypothesis, X does not cause Y p-value | F-statistic | p-value F-statistic
0.01 6.1 0 25.3
0.46 0.55 0.0007 11.5
0.04 4.2 0.52 0.41




Unsupervised Clustering
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Principal Component Analysis (PCA) followed by minibatch K-means




Feature Correlation Learning using Graphical Lasso
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Feature Correlation Learning using Graphical Lasso
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Conclusions and Future Work

« A framework for segmentation analysis in energy game-theoretic frameworks
« Clustering of agent behaviors and an explainable statistical model

» Characterization of causal relationship among several contributed features
explaining decision-making patterns in agent’s actions.

» Specific incentives can be designed for characteristic clusters
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Future Work

» Tree based Incentive Design

« Study of long term effects of
social game with improved
incentive design
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Thank You!

Questions?




References

« “Design, Benchmarking and Explainability Analysis of a Game-Theoretic
Framework towards Energy Efficiency in Smart Infrastructure”, loannis C.
Konstantakopoulos, Hari Prasanna Das, Andrew R. Barkan, Shiying He, Tanya

Veeravalli, Huihan Liu, A ummul Baneen Manasawala, Yu-Wen Lin and Costas J.
Spanos, arXiv preprint arXiv:1910.07899, 2019

« “A Novel Graphical Lasso based approach towards Segmentation Analysis in Energy
Game-Theoretic Frameworks”, Hari Prasanna Das, Ioannis C. Konstantakopoulos,

Aummul Baneen Manasawala, Tanya Veeravalli, Huihan Liu and Costas J. Spanos,
arXiv preprint arXiv:1910.02217, 2019

» Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical Learning with
Sparsity: The Lasso and Generalizations. Chapman & Hall/CRC, 2015



-
Energy Social Game Experiment

« Experimental environment: Residential housing single room apartments in Nanyang
Technological University (NTU), Singapore campus.

» Deployed IoT sensors for energy resource observation and employed an web-

interface for interaction with players

« Energy usage observed: Ceiling Light, Desk Light, A/C and Fan

» Occupants were rewarded with points based on how energy efficient their daily
usage is in comparison to their past usage and usage of other players in the game.
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