

Using Spatiotemporal Features for Butterfly Classification

MARTA SKRETA, SASHA LUCCIONI, DAVID ROLNICK



Climate Change and Butterflies

BUTTERFLIES

Temperature/weather impact

Indirect via habitat loss

ECOSYSTEM

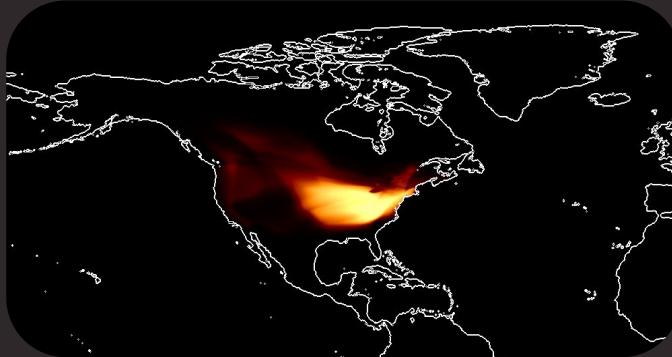
Predators of butterflies/caterpillars

Plants that butterflies pollinate

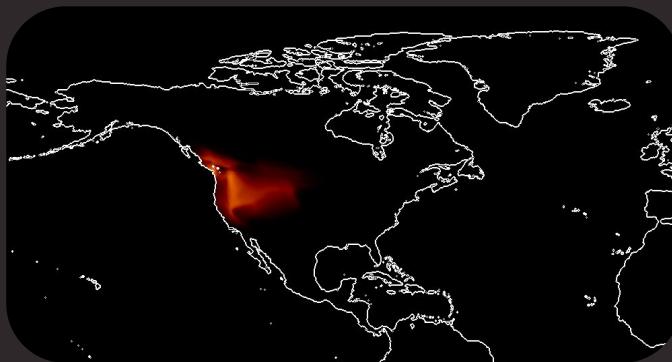
eButterfly project

- > 400,000 observations in North America by citizen scientists
- > 600 species
- Difficult to label images by hand
- Machine learning can be useful

S. cybele



S. zerene



Can we use **WHERE** and **WHEN** the image was
taken to improve classification?

Related work

- Networks **trained** on images and geocoordinates **together**¹
 - Assumption that test sample has location
 - Can't learn from spatiotemporal information that doesn't have image
- **Bayesian approach:**
Train image and spatiotemporal **models separately, combine them at test time**²
 - Successfully used to classify birds & other animals
- **Image-only classifiers** have been built for butterfly identification³

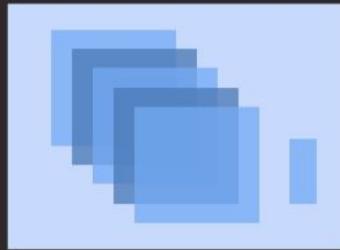
[1] Chu et al. Geo-aware networks for fine-grained recognition. ICCV 2019

[2] Aodha et al. Presence-only geographical priors for fine-grained image classification. ICCV 2019

[3] Kantor et al. Guided attention for fine-grained and hierarchical classification. 2020

TRAIN TIME

Image, \mathbf{I}

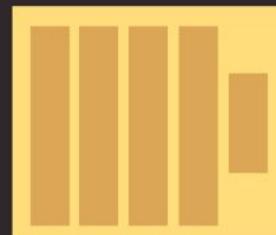


ResNet-50 CNN

$P(y|\mathbf{I})$

(lat, lon, date)

$[\sin(\mathbf{x}), \cos(\mathbf{x})]$



Spatiotemporal
encoder



$P(y|\mathbf{x})$

Spatiotemporal features, \mathbf{x}

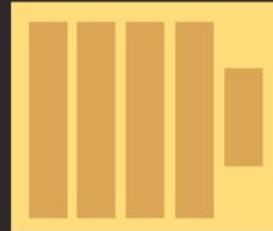
TEST TIME



$$P(y | \mathbf{I}) P(y | \mathbf{x}) \propto P(y | \mathbf{I}, \mathbf{x})$$

$[\sin(\mathbf{x}), \cos(\mathbf{x})]$

$(\text{lat}, \text{lon}, \text{date})$



Accuracy	Image only	Image + (Lat, Lon, Date)
Top 1, Micro	84.56	86.53
Top 1, Macro	59.87	65.65
Top 3, Micro	93.84	95.38
Top 3, Macro	77.53	83.74

Micro accuracy: total correct/total number samples

Macro accuracy: average of species accuracies

Data augmentation

- Dataset is **imbalanced**:
 - > 400 species have < 100 observations
 - < 200 species have up to 2700 observations
- We use **iNaturalist** to **increase rare species** representation
 - Sample from iNaturalist until **each species has 100** observations

Accuracy	eButterfly	eButterfly + iNat	eButterfly + iNat + (Lat, Lon, Date)
Top 1, Micro	84.56	84.94	87.90
Top 1, Macro	59.87	69.51	75.73
Top 3, Micro	93.84	93.94	95.86
Top 3, Macro	77.53	83.59	89.38

Micro accuracy: total correct/total number samples

Macro accuracy: average of species accuracies

Conclusion & Future Work

- Using **spatiotemporal features improves** classification
- **Augmenting rare species** increases macro accuracy
- Working on improving geo model & testing on other species
- **Model is being deployed** on eButterfly website

martaskreta@cs.toronto.edu