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Abstract

Understanding the changing distributions of butterflies gives insight into the impacts
of climate change across ecosystems and is a prerequisite for conservation efforts.
eButterfly is a citizen science website created to allow people to track the butterfly
species around them and use these observations to contribute to research. However,
correctly identifying butterfly species is a challenging task for non-specialists and
currently requires the involvement of entomologists to verify the labels of novice
users on the website. We have developed a computer vision model to label butterfly
images from eButterfly automatically, decreasing the need for human experts. We
employ a model that incorporates geographic and temporal information of where
and when the image was taken, in addition to the image itself. We show that we can
successfully apply this spatiotemporal model for fine-grained image recognition,
significantly improving the accuracy of our classification model compared to a
baseline image recognition system trained on the same dataset.

1 Introduction

Insect populations are plummeting on a global scale, including butterflies. One of the reasons for
this is that butterflies are highly susceptible to changes in their surrounding environment, such as
climate change, habitat loss, and pesticide use [1]]. In fact, some species of butterflies are directly
impacted by climate change through their growth and reproduction cycles, such as the Karner Blue
butterfly (Lycaeides melissa samuelis), which is an endangered species. This is in part because
warmer temperatures can induce butterfly eggs to hatch more quickly while their food source remains
dormant, resulting in population decline [2]]. Butterflies can also be indirectly impacted by climate
change if their habitat becomes altered. For example, the Rocky Mountain Apollo (Parnassius
smintheus) and the Monarch (Danaus plexippus) have both incurred ecosystem reduction due to
indirect effects of climate change on their host plants [3} 4]

Apart from the loss of beautiful and culturally meaningful animals, a reduction in butterfly biodiversity
could have dire consequences, since butterflies play a key role in a multitude of ecosystems. For
instance, butterflies are important pollinators of many species of flowering plants. A reduction in
butterfly populations, or even a change in the timing of butterfly life cycles, could mean that certain
flower species experience a significant drop in pollination [5]. Butterflies are also an important food
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source for many animals, including birds, lizards, and other insects [6, [7, [8]. Thus, any changes in
butterfly populations can trigger a “butterfly effect” and impact other parts of ecosystems, potentially
resulting in far-reaching repercussions.

In order to understand changes in butterfly populations and employ appropriate conservation measures,
it is important to track the distribution and abundance of butterflies. eButterfly is a website developed
by a coalition of researchers across the United States and Canada, to which individuals are able to
upload images of butterflies from any location and identify the species to which they belong [9]].
Analyzing these butterfly images and the observational data that accompanies them can offer valuable
information on changes in geographical and temporal distribution. However, it is important to first
obtain accurate labels for individual butterfly species. While any user of the eButterfly website can
upload an image, they may not necessarily know the species, since fine-grained butterfly identification
can be challenging for novice entomologists. We leverage machine learning to automate the labelling
process, allowing experts to focus only on the most challenging identifications and alleviating a
bottleneck that has held back the eButterfly project.

2 Related Work

There has been extensive work on using images taken by photographers or camera traps for automatic
identification of animal species, including birds, mammals, ground-dwelling insects, bees, and more
(see e.g. [0} (11} 112} [13( |14} [15] [16]). Recent work has proposed to improve such image-based
identification systems using complementary information, such as spatiotemporal distribution [17}[18]].
The motivation behind this is that visually similar species may be present in different geographic
regions and at different periods of the year, and therefore knowing where and when a picture was
taken may be useful information for fine-grained classification. The authors of [17] developed a
spatiotemporal prior that estimates the probability of a species being present based on where and
when the image was taken, and applied this model especially to bird identification.

However, little work has applied such ideas to the problem of butterfly classification, which to
date has been carried out largely based on pure image data [19, 20]. Our approach uses features
extracted from both the image and its accompanying information, such as geolocation and date. To
our knowledge, ours is the first approach that utilizes both image data and auxiliary features for
fine-grained butterfly species monitoring. This approach is highly relevant as many butterfly species
have highly restricted distributions, even within North America. For example, Figure [T|shows images
of two species belonging to the genus Speyeria. Although they are visually similar, one is found
primarily in Eastern North America and the other exclusively in the West.
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Figure 1: Images and geographic ranges of (a) Speyeria cybele and (b) Speyeria zerene in the month
of June from the eButterfly database. Although they are visually similar, one is found primarily in
Eastern North America and the other exclusively in the West.

3 Dataset

Our work uses images collected via the eButterfly website by citizen scientists across North Amer-
ica [9]. As of October 2020, eButterfly contains over 100,000 hand-labelled images and 400,000



geolocation observations for over 600 butterfly species, all verified by expert entomologists. (While
we have partnered directly with eButterfly, this data is also available for use by other researchers
on request.) As different butterflies have different abundances, the dataset is imbalanced: over 400
species contain less than 100 observations, while the remaining species have up to 2,700 images.

In some of our experiments, we increase the representation of rare species slightly, so that the model
has enough data to learn but remains less likely to predict them than more common species. To do
this, we augment the eButterfly dataset with observation data from the iNaturalist project, a publicly-
available dataset of images of animals, plants, and other organisms [21]]. We use the iNaturalist data
to ensure that all species in the dataset have at least 100 observations. If there are not enough unique
images available in the combined iNaturalist and eButterfly datasets, we sample the images with
replacement until 100 images are collected per species.

4 Methods

The baseline for our model is an image-only deep-learning-based identification model developed by
Kantor et al [22]]. The model uses the ResNet-50 architecture [23]]. To train the model, we remove
the final two linear layers of ResNet-50 and learn them from scratch to take into account the different
number of classes in eButterfly.

The goal of our approach is to build on the image-based model by learning a spatiotemporal prior that
encodes the presence of a species given geographic and temporal data associated with the images. As
in [17]], we train two encoder models (Figure [2): the first learns the probability of a given species
being present in the image with the form P(y|I) where y is the class and I is the image. The second
model is trained to estimate the species from spatiotemporal features with P(y|x), where x is the
concatenation of the image’s longitude, latitude, and capture date. Our model is a neural network
containing 9 fully connected layers with skip connections between them, and the loss function is a
variation of the cross-entropy loss where we multiply the penalty of false negatives by a large constant
(empirically we find that 10 gives best performance). Upweighting false negatives encourages the
model to extrapolate the presence of species between discrete observation locations.
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Figure 2: Schematic of incorporating spatiotemporal features. During training, we predict the butterfly
species from the corresponding image and geo-spatiotemporal data independently. At test time, we
use the output from the spatiotemporal model as a Bayesian prior.



We assume that x and I are conditionally independent given y; in this case, we have the relationship
P(y|I;x) o< P(y|I)P(y|x), which allows us to use our spatiotemporal model as a Bayesian prior
at test time. To obtain the prediction for a test sample, we pass a butterfly image through the
image classifier and its corresponding spatiotemporal information through the spatiotemporal model
separately. We then multiply the outputs from both models to obtain the final class prediction.

5 Results

The metrics that we track and report are macro accuracy, which is the total number of correct
observations divided by the total observations, and micro accuracy, which is the average of model
performance on each class. The latter metric is more challenging when considering imbalanced
datasets such as ours, since it treats all classes equally, while the former is a better representation of
performance on data “in the wild” as it reflects the natural abundances of different species.

We find that using geographic and temporal information increases our model’s macro and micro
accuracies by 2% and 6%, respectively (Table[I). This demonstrates that incorporating additional
features to the image classification model has the potential to significantly improve final classification
performance, especially for underrepresented classes, and calls for further exploration.

Table 1: Model performance on butterfly classification model using only images (Image only),
incorporating coordinates of image (Image + (Lat, Lon)) and incorporating coordinates and date of
image (Image + (Lat, Lon, Date))

Accuracy Image only Image + (Lat, Lon) Image + (Lat, Lon, Date)

Top 1 Macro 84.56 86.16 86.53
Top 1 Micro 59.87 64.47 65.65
Top 3 Macro 93.84 95.06 95.38
Top 3 Micro 77.53 83.14 83.74

As can be seen in Table[I] there is a large difference between macro and micro accuracies, indicating
that our model does significantly worse on species that are less common in the wild or otherwise
underrepresented in the data. To palliate this, we augment our dataset with images from the iNaturalist
dataset, as detailed in §3] Table[2] shows the impact of augmenting the eButterfly dataset with images
from iNaturalist and ensuring each species has at least 100 images.

Table 2: Performance of butterfly image classification model on eButterfly dataset, combined eButter-
fly + iNaturalist (iNat) datasets, and combined eButterfly + iNat datasets with coordinate and date of
image (Lat, Lon, Date), where iNaturalist is used to augment rare species.

Accuracy eButterfly eButterfly + iNat  eButterfly + iNat
+ (Lat, Lon, Date)

Top 1 Macro 84.56 84.94 87.90
Top 1 Micro 59.87 69.51 75.73
Top 3 Macro 93.84 93.94 95.86
Top 3 Micro 77.53 83.59 89.38

We find that augmenting rare classes with iNaturalist data improves the performance by 6-10% for the
micro accuracy, indicating that rare species benefit from having more training data. The gain in macro
accuracy is more modest since this metric is heavily influenced by species that are common, for
which performance is not significantly altered by this method. When combining our spatiotemporal
model with data augmentation, we see a performance boost of up to 15% compared to the baseline.

6 Conclusion & Future Work

In this work, we demonstrate that incorporating spatiotemporal information regarding where and
when an image was taken can greatly improve the fine-grained classification of North American
butterflies. We are working with the eButterfly project to deploy our model as a tool to recommend



species identifications to eButterfly users, thereby reducing the time and effort needed for expert
entomologists to vet all incoming observations.

In future work, we intend to improve our spatiotemporal prior by incorporating information from
satellite images, which will allow us to directly model butterfly habitats (e.g. urban zones, forests and
wetland areas). We are also planning to incorporate information from datasets on bird distribution,
as there are correlations between co-occurrences of various bird and butterfly species and there is
considerable information about birds that is widely available. Finally, we intend to leverage our
spatiotemporal prior to redistribute probabilities between visually similar images, as captured by the
confusion matrix of the image model. For example, if our image model predicts species A with high
likelihood but the probability from the spatiotemporal prior is low, we can redistribute some of the
probability mass on species A to species B, which is visually similar to A but has a higher value for
the spatiotemporal prior. We believe these various innovations will further increase performance and
lead to more effective tools for advancing citizen science.
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