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Solar Energy

A day of solar in Austin, TX

e Adopting solar in the electricity sector is 800 -
essential to reducing GHG emissions' =
e Solar is highly volatile and intermittent, so 600 1
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Probabilistic Solar Forecasting: Current Problems

e Numerical weather prediction (NWP) models
o Cannot be used on short timescales
o Computational inefficiency

e ML models
o Generally rely on traditional models
o Perform substantially worse than NWP where comparable

e Probabilistic smart persistence
o Can be defined in several ways
o Some remarkably good baselines
o Consistently worse than NWP and machine learning

Solar forecasting methods for renewable energy integration. Progress in Energy and Combustion Science 2013.



Modern probabilistic ML
can substantially
improve solar forecasting



Methods




Data: SURFRAD Network

e NOAA’s Surface Radiation
(SURFRAD) Network®

e Seven stations throughout U.S.

e Measure solar irradiance (GHI) at
5min resolution

e Meteorological inputs

SSURFRAD (Surface Radiation Budget) Network. Global Monitoring Laboratory.
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e Gaussian Process®

5Gaussian Processes for Nonlinear Signal Processing: An Overview of Recent Advances. IEEE Signal Processing Magazine 2013.
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Probabilistic Models

e Gaussian Process®

e Dropout Neural Network’

e Variational Neural Network®

e NGBoost®

5Gaussian Processes for Nonlinear Signal Processing: An Overview of Recent Advances. IEEE Signal Processing Magazine 2013.
’Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016.

8What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurlPS 2017.

°NGBoost: Natural Gradient Boosting for Probabilistic Prediction. ICML 2020.
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Are the probabilistic forecasts consistent with
the observations?

Measures whether predicted distributions
correctly capture confidence levels.
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e Calibration
o Are the probabilistic forecasts consistent with
the observations?
o Measures whether predicted distributions
correctly capture confidence levels.
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Calibration curve for a Gaussian ® Sharpness
process regression model o Is the probability distribution tight?

forecasting in Penn State, PA . . )
o Sharper models are better, subject to calibration.



Post-hoc Calibration Methods

e Models are usually not well-calibrated by default
o  They’re often overconfident on unseen data

e Post-hoc calibration methods:
o Gaussian MLE
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Post-hoc Calibration Methods

e Models are usually not well-calibrated by default o UL

. g .
o They're often overconfident on unseen data Calibrated
—— Uncalibrated

e Post-hoc calibration methods:
o  Gaussian MLE
o  Kuleshov: invert the calibration curve'
o CRUDE: measure z-scores of observed errors™

Observed Confidence Level

0.0 0.2 0.4 0.6 0.8 1.0
Expected Confidence Level

Multiples of O

OAccurate Uncertainties for Deep Learning Using Calibrated Regression. ICML 2018.
"CRUDE: Calibrating Regression Uncertainty Distributions Empirically. ICML 2020 Workshop on Uncertainty & Robustness in Deep Learning.



Performance Metric: CRPS

e |s there a metric which captures
both calibration and sharpness?

e C(Continuous Ranked Probability

Score (CRPS)
o Area between the predicted
CDF and a step function at the
observed value

Countdown Regression: Sharp and Calibrated Survival Predictions. UAI 2019.
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Results




Comparison Between Our Models

Station Gaussian Process | Dropout Neural Network | Variational Neural Net | NGBoost
None MLE C Kul. | None MLE C Kul. | None MLE C Kul. | None MLE C Kul.
Bondville, IL 101.3 532 485 48.6 | 485 46.0 43.6 440 | 420 420 418 419 | 405 405 406 40.6
Boulder, CO 1109 61.7 564 565 | 593 558 533 539 | 48,6 489 483 486 | 459 46.1 460 46.2
Desert Rock, NV 96.6 443 354 357 | 372 408 36.1 362 | 314 325 300 303 | 279 30.1 278 282
Fort Peck, MT 97.5 507 43.6 434 | 416 419 389 390 | 379 468 375 376 | 348 352 350 349
Goodwin Creek, MS | 119.2 59.8 547 549 | 579 533 516 515 | 469 469 467 469 | 448 450 448 45.1
Penn State, PA 111.6 58.8 539 533 | 565 512 495 48.0 | 474 474 473 470 | 460 466 46.1 46.0
Sioux Falls, SD 107.2 544 493 495 | 480 46.0 434 437 | 438 418 424 430 | 379 39.1 380 384

e NGBoost was consistently the best performing model

e Calibration had no substantial impact for short-term forecasting



Comparison To Prior Models

CH-P PeEn MCM NGB %A
Bondville, IL 92.1 52.8 48.7 40.5 -16.8%
Boulder, CO 91.3 61.6 51.6 459 -11.0%
Desert Rock, NV 47.3 352 294 27.9 -5.1%
Fort Peck, MT 77.0 46.3 39.8 348 -12.6%
Goodwin Creek, MS 98.4 59.7 525 448 -14.7%
Penn State, PA 98.1 60.0 53.0 46.0 -13.2%
Sioux Falls, SD 86.8 47.8 41.0 37.9 -7.6%

Intra-hourly Performance

e NGBoost was consistently the best short-term forecasting model

CH-P GAU NWP NGB (+0)
78.1 527 50.8 53.1(52.9)
7577 642 64.6 60.3 (60.4)
377 425 39.2  36.1(35.8)
648 499 48.0 46.3 (46.2)
823 583 564 56.9 (56.6)
834 5851 574  58.8(58.1)
743 506 49.7 58.6 (56.6)

Hourly Resolution Performance

e NGBoost with CRUDE calibration often outperformed NWP models



Global Horizontal Irradiance (GHI)
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Future Directions

® Incorporate satellite imagery to account for clouds

e An ablation study of various inputs would help
o Can we predict irradiance accurately with only public data?
e Could the models perform better with better hyperparameters?
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