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Motivation

[Heating, ventilation and air conditioning systems (HVAC) - ~30% of energy* ]
[Extreme climates — demand increases ]
(a) Typical Energy Consumption (b) Relationship between cooling demand and outside air temperature
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Source: [2] Source: [3]

[1] Manjarres et al. (2017), ‘An energy-efficient predictive control for HVAC systems applied to tertiary buildings based on regression technique’
[2] Online. (2018) https://energy.stanford.edu/sites/g/files/sbiybj9971/f/energy_seminar_march_28 final.pdf s
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Background

* |dentification of the thermal response of the building to relevant control inputs

* Integral components of HVAC: AHUs and VAVs characterize the thermal dynamics

* Data-driven modeling approach

Building
* System identification model Exhaust ATe - campors VAVS
* Control variables: zone-level temperature setpoints ) '
* Cooling demand across AHU is a function of cRemAn. o cones
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Cooling System Design

Building

Exhaust AervQ’ da\rf%\grs VA\G
Damper - ﬁ |L| E
A Return Air » Zones
Inputs to AHU: Outside air (OA) and Return air (RA)
Output of AHU: Chilled supply air
Assumption: Cooling demand is a function of
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Modeling Approach

* Challenges and proposed solutions

Cooling —Jp| * RAT measurements for the future are
Demand Cooling Estimated not available — Estimate them first
RAT —® Dpemand » Cooling e OAT forecasts from a local weather
OAT —P»{  Model Demand station — treated as exogenous variable
TSPs —P»

* TSPs are collinear variables —
dimensionality reduction
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Modeling Approach

Cooling * RAT Estimator
Demand * Future RAT values are a function of past
RAT measurements, current OAT and
OAT > Cooli current TSPs
5 ;’n‘i;r;% Estimated
AT RAT Model % Sgﬁgﬁ% * Dimensionality Reduction Technique
> Estimator * Principal component analysis (PCA)
* Extracted PCs from TSPs
. Dimensionality
TSPs Reduction I ° ARX models
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Modeling RAT

Lag order # of PCs a; : Model Coefficients

/ /
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Tra(t+1) = Z ay i Tra(t—i+ 1)+ Z a2 pdk(t) + asToa(l) (1)
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Modeling Cooling Demand

Lag order # of PCs # of AHUs 6; : Model Coefficients
| NN

X(t+1) = Z BriX(t—i+1) —I—ZI B kdK(t) +ZI (B3.kTRAK(t) + BarToak(t))
=1 / k=1 / =l f \ (1)

Past values of PCs of Return Outside
Temperature : :
demand , Air Temperature Air Temperature
setpoints
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Data Prepa ration and Analysis — Dimension Reduction (PCA)
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RAT Estimation Prediction Errors (3 days)

Table 1: RAT1 Estimation (Exogenous: OAT1 and TSPs)

ME RMSE MAE MPE MAPE
Test set 1.807 2.412 1.931 2.253 2.418

Table 2: RAT2 Estimation (Exogenous: OAT2 and TSPs)

ME RMSE MAE MPE MAPE
Test set  0.991 2.101 1.759 1.294 2.335
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Experimental Data

Specifications

e Operating hours:
9am —6pm

e Time resolution: 5 min
to 1 hour interval

Scenarios

e A) Exclude the night
time period from
analysis

* B) Replace low demand
by a constant

* C) Forecast using a
rolling window
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(A) Cooling Demand - removal of low demand periods
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(B) Cooling Demand - low demand periods set to 2 ton
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(B) Cocling Demand - low demand periods set to 2 ton

* RMSE =5.323969
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(C) Cooling Demand - rolling window forecast

* Roll period: 10t July — 20t July * Prediction horizon: 15t Aug: 11t Aug

* Training window: three weeks
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(C) Cooling Demand - rolling window forecast

* Roll period: 10t July — 20t July * Prediction horizon: 15t Aug: 11t Aug

* Training window: three weeks
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(C) Cooling Demand - rolling window forecast for August 2020
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(C) Cooling Demand - rolling window forecast

Table 1: RMSE variations on each day of Aug

Day 1 2 3 4 5 6 7 8 9 10 11
RMSE 4542 3.773 2915 6.564 3.758 5418  6.102 1.375  3.773  6.1561  5.917
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Takeaways

1. Testing/prediction horizon: Dynamic models are more accurate but may suffer from
discontinuities in the data

2. Physical constraints: Buildings are shut down at night

3. Discarding the cooling demand and RAT values measured during the night may have a
negative impact on the prediction of the demand for the first few minutes in the morning

4. Scalability

( )

Campus wide

. J/
( )

Building’s thermal response

( )

Occupancy mode

. J/
( )

Occupancy behavior

\ J/
( )

Indoor environment

. J/
( )

Outside air temperature

\ J/
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Thank you!
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