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Motivation
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Heating, ventilation and air conditioning systems (HVAC) - ~30% of energy1

Extreme climates – demand increases

[1] Manjarres et al. (2017), ‘An energy-efficient predictive control for HVAC systems applied to tertiary buildings based on regression technique’
[2] Online. (2018) https://energy.stanford.edu/sites/g/files/sbiybj9971/f/energy_seminar_march_28_final.pdf s

Source: [2]

(a) Typical Energy Consumption

Source: [3]

(b) Relationship between cooling demand and outside air temperature



Background

• Identification of the thermal response of the building to relevant control inputs

• Integral components of HVAC: AHUs and VAVs characterize the thermal dynamics

• Data-driven modeling approach 

• System identification model
• Control variables: zone-level temperature setpoints

• Cooling demand across AHU is a function of 
• Temperature setpoints (TSPs)

• Outside Air Temperature (OAT)

• Return Air Temperature (RAT)
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Cooling System Design
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Inputs to AHU: Outside air (OA) and Return air (RA)
Output of AHU: Chilled supply air
Assumption: Cooling demand is a function of 
Temperature setpoints (TSPs) and input air 
temperature



Modeling Approach
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• Challenges and proposed solutions
• RAT measurements for the future are 

not available – Estimate them first

• OAT forecasts from a local weather 
station – treated as exogenous variable

• TSPs are collinear variables –
dimensionality reduction



Modeling Approach
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• RAT Estimator
• Future RAT values are a function of past 

RAT measurements, current OAT and 
current TSPs

• Dimensionality Reduction Technique
• Principal component analysis (PCA)

• Extracted PCs from TSPs

• ARX models



Modeling RAT
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Past values of 
RAT

PCs of 
Temperature 

setpoints

Outside
Air Temperature

Lag order # of PCs αj : Model Coefficients



Modeling Cooling Demand
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Data

George Havas Building

• Two AHUs

• Multiple zones (15, 18)

• Time resolution: 5 min

• Period: June – October

• Three sets for training 
(30th June – 15th Oct)

• Prediction: 16th – 18 Oct
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Data Preparation and Analysis – Dimension Reduction (PCA)
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Reduce 
dimensionality

Principal components 
capture the 

underlying structure 
Linear transformation

AHU-1 AHU-2

~ 60 + 15 + 10 = 85%



RAT Estimation Prediction Errors (3 days)

STANFORD UNIVERSITY12



Experimental Data

Specifications

• Operating hours: 
9am – 6pm

• Time resolution: 5 min 
to 1 hour interval 
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Scenarios

•A) Exclude the night 
time period from 
analysis

•B) Replace low demand 
by a constant

•C) Forecast using a 
rolling window

Training period



(A) Cooling Demand – removal of low demand periods

• RMSE = 9.23
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(B) Cooling Demand – low demand periods set to 2 ton

STANFORD UNIVERSITY15

Training period



(B) Cooling Demand – low demand periods set to 2 ton

• RMSE = 5.323969
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(C) Cooling Demand – rolling window forecast

• Roll period: 10th July – 20th July

• Training window: three weeks
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Start 
rolling

Roll Period

• Prediction horizon: 1st Aug: 11th Aug

End 
rolling



(C) Cooling Demand – rolling window forecast

• Roll period: 10th July – 20th July

• Training window: three weeks
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Start 
rolling

Roll Period

Training window for July 10

Predict 
demand

• Prediction horizon: 1st Aug: 11th Aug



(C) Cooling Demand – rolling window forecast for August 2020
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(C) Cooling Demand – rolling window forecast
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Takeaways

1. Testing/prediction horizon: Dynamic models are more accurate but may suffer from 
discontinuities in the data

2. Physical constraints: Buildings are shut down at night

3. Discarding the cooling demand and RAT values measured during the night may have a 
negative impact on the prediction of the demand for the first few minutes in the morning

4. Scalability
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Campus wide

Building’s thermal response

Occupancy mode

Occupancy behavior

Indoor environment

Outside air temperature



Thank you!
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