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Abstract
Energy Demand Response (DR) will play a cru-
cial role in balancing renewable energy genera-
tion with demand as grids decarbonize. There
is growing interest in developing Reinforcement
Learning (RL) techniques to optimize DR pric-
ing, as pricing set by electric utilities often cannot
take behavioral irrationality into account. How-
ever, so far, attempts to standardize RL efforts in
this area do not exist. In this paper, we present
a first of the kind OpenAI gym environment for
testing DR with occupant level building dynam-
ics. We demonstrate the flexibility with which
a researcher can customize our simulated office
environment through the explicit input parameters
we have provided. We hope that this work enables
future work in DR in buildings.

1. Introduction
Efforts to address climate change are impossible without a
quick and safe transition to renewable energy. Barring strate-
gies to address the “volatility” of generation in renewable
energy sources, grids with increasing shares of renewable
energy will face daunting consquences. These range from
wasting of energy through curtailment (i.e., the shutting off
of green energy sources when generation exceeds supply)
(Spangher et al., 2020), voltage instability, or damage to the
physical infrasture of the grid. Indeed, the California grid of
2019 needed to curtail roughly 3% of its energy, with some
days seeing up to 33% of solar energy curtailed.

One solution to curtailment commonly touted is energy
Demand Response (DR) which entails the deferment of
energy demand from when it is demanded to when it is most
opportune for it to be filled. DR is essentially costless, as
it requires no infrastructure, so it is important as a direct
solution.

One primary area of application for DR is in buildings.
Buildings make up a significant, increasing component of
US energy demand. In residential and commercial buildings,
plug loads represent 30% of total electricity use ((Lanzisera

et al., 2013), (Srinivasan et al., 2011)). In addition, the
quantity of energy used by plugs is increasing more quickly
than any other load type in both residential and commercial
buildings (Comstock & Jarzomski, 2012).

Machine Learning (ML), while transformative in many sec-
tors of the economy, is somewhat underdeveloped when it
comes to energy applications. The creation of the AI in
Climate Change community exist to bridge this gap, encour-
aging the collaboration of research to develop and apply
a broad array of techniques into an equally broad array of
applications. To encourage exploration in occupant level
building DR, we propose to formalize an OpenAI Gym en-
vironment for the testing of Reinforcement Learning (RL)
agents within a single office building.

2. Related Works
Deep RL is a subfield in ML that trains an agent to choose
actions that maximize its rewards in an environment (Sutton
& Barto, 1998). RL has had extensive success in complex
control environments like Atari games (Mnih et al., 2013)
and in previously unsolved domains like PSPACE-complete
Sokoban planning (Feng et al., 2020). It has limited success
in energy: Google implemented RL controls to reduce en-
ergy consumption in data centers by 40%. When DeepMind
used a form of multi-agent RL to beat the world champion
in the complex and strategic game of Go (Borowiec, 2016),
researchers called for similar advancement in RL for power
systems (Li & Du, 2018).

OpenAI Gym environments are a series of standardized
environments that provide platform for benchmarking the
progress of learning agents (Brockman et al., 2016). Gym
environments allow researcher to create custom environ-
ments under a general and widely accepted API frame-
work/format that immediately allows deployment of a suite
of out-of-the-box RL techniques; therefore therefore so
Gym environments tend to concentrate work around the
specific problem that they describe.

Other groups have produced OpenAI Gym environments
around similar goals but with different scopes. CityLearn
aims to integrate multi-agent RL applications for DR in
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connected communities (Vázquez-Canteli et al., 2019). The
environment supports customizing an array of variables in
the creation of a heterogenous group of buildings, includ-
ing number of buildings, type of buildings, and demand
profile. A competition was hosted in CityLearn, in which
the creators solicited submissions of agents that could learn
appropriately in their environment (Kathirgamanathan et al.,
2020).

We are unaware of an effort that attempts to focus study
around occupant level energy DR in a Gym environment:
that is, an effort that focuses on occupant level DR within a
building. Therefore, we endeavor in this work to present the
OfficeLearn Gym environment, an environment that may
serve as preparation grounds for experiments implementing
DR within real world test buildings.

2.1. Paper Outline

We have contextualized the creation of our Gym environ-
ment within the broader effort of applying ML techniques
to climate change in Sections 1 and 2. In Section 3, we
describe the technical details of our environment and how
those will differ in future iterations. In Section 4, we illus-
trate the dynamics of the system by comparing key design
choices in environmental setup. In Section 5, 6, and 7, we
conclude, note how you might use the environment, and
discuss future directions.

3. Description of Gym Environment
3.1. Overview

In this section, we highlight a summary of the environment
and the underlying Markov Decision Process. The flow of
information is succinctly expressed in Figure 1.

The environment takes the format of the following Markov
Decision Process (MDP), (S,A, p, r):

• State Space S: The prices, energy usage, and baseline
energy, all 10-dim vectors.

• Action Space A: A 10-dim vector (continuous or dis-
crete) containing the agent’s points.

• Transition probability p.

• Reward r defined in Section 3.5.

We describe out design choices and variants of the MDP
below.

3.2. State space

The steps of the agent are currently formulated day by day,
with ten-hour working days considered. Therefore, while

Figure 1. A schematic showing the interplay between agent and
office environment, and ensuing energy reponses. The agent re-
ceives prices from the grid, then transforms it into “points” (called
as such for differentiation.) Office workers engage with the points
in the way an individual might be engaged with their home energy
bill, which is reasonable assuming behavioral incentives detailed
in (Spangher et al., 2020). The office recieves these points at the
beginning of the “day”. Workers proceed to use energy throughout
the day and at night the system delivers a record of their energy
consumption, which is reduced into a reward that trains the agent.

the state space has several different components (described
below), each is of ten dimensions as each one is hourly in
nature.

3.2.1. GRID PRICE REGIMES

Utilities are increasingly moving towards time dependent
energy pricing, especially for bigger consumers such as
commercial office buildings with the capacity to shift their
energy usage. Time of use (TOU) pricing involves is a
simple, two-level daily price curve that changes seasonally
and is declared ahead of time. We use PG&E’s TOU price
curves from 2019. Real time pricing (RTP), meanwhile, is
dynamic for every hour and changes according to supply
and demand in the energy market. We simulate it by sub-
tracting the solar energy from demand of a sample building.
There is significant seasonal variation in prices depending
on geography, e.g. in warmer climates, the increased cool-
ing load during summer can cause an increase in energy
prices.

3.2.2. ENERGY OF THE PRIOR STEPS

The default instantiation of the environment includes the
energy use of office workers of the prior step. This allows
the agent to directly consider a day-to-day time dependence.
The simulated office workers in this version are currently
memoryless day to day in their energy consumption, but
a future simulation will allow for weekly deferable energy
demands to simulate weekly work that can be deferred and
then accomplished.

The energy of the prior steps may be optionally excluded
from the state space by those who use our environment.
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3.2.3. GRID PRICES OF THE PRIOR STEP

Users may optionally include the grid price from prior steps
in the state space. This would allow the agent to directly
consider the behavioral hysteresis that past grid prices may
have on a real office worker’s energy consumption. Al-
though this is a noted phenomenon in human psychology
generally (Richards & Green, 2003), it is not well quanti-
fied and so we have not included it in how we calculate our
simulated human agents.

3.2.4. BASELINE ENERGY

Baseline Energy may optionally be included in the state
space. If the agent directly observes its own action and the
baseline energy, it observes all of the information neces-
sary to calculate certain simpler simulated office worker
responses. Therefore, inclusion of this element will make
the problem fully observable, and truly an MDP rather than
Partially Observable MDP (POMDP).

3.3. Action space

The agent’s action space expresses the points that the agent
delivers to the office. The action space is by default a con-
tinuous value between zero and ten, but may be optionally
discretized to integer values if the learning algorithm outputs
discrete values.

The purpose of the action is to translate the grid price into
one that optimizes for behavioral response to points. There-
fore, the policy will learn over time how people respond to
the points given and maximally shift their demand towards
the prices that the grid gives.

3.4. Office workers: simulated response functions

In this section, we will summarize various simulated re-
sponses that office workers may exhibit.

3.4.1. “DETERMINISTIC OFFICE WORKER”

We include three types of deterministic response, with the
option for the user to specify a mixed office of all three.

In the linear response, we define simple office worker who
decreases their energy consumption linearly below a base-
line with respect to points given. Therefore, if bt is the
baseline energy consumption at time t and pt are the points
given, the energy demand d at time t is dt = bt−pt, clipped
at dmin and dmax as defined in Section 3.5.

In the sinusoidal response, we define an office worker who
responds well to points towards the middle of the distribu-
tion and not well to prices at the. Therefore, the energy
demand d at time t is dt = bt − sin pt, clipped at dmin and
dmax.

In the threshold exponential response, we define an office
worker who does not respond to points until they are high,
at which point they respond exponentially. Therefore, the
energy demand d is dt = bt − (exp pt ∗ (pt > 5)) , clipped
at dmin and dmax.

3.4.2. “CURTAIL AND SHIFT OFFICE WORKER”

Office workers need to consume electricity to do their work,
and may not be able to curtail their load below a minimum
threshold, e.g. the minimum power needed to run a PC.
They may have the ability to shift their load over a definite
time interval, e.g. choosing to charge their laptops ahead
of time or at a later time. We model a response function
that exhibits both of these behaviors. We can model the
aggregate load of a person (bt) as a combination of fixed
inflexible demand (bfixedt ), curtailable demand (bcurtailt ),
and shiftable demand (bshiftt ), i.e., bt = bfixedt + bcurtailt +

bshiftt . All of the curtailable demand is curtailed for the
Tcurtail hours (set to 3 hours in practice) with the highest
points, and for every hour t the shiftable demand is shifted
to the hour within [t − Tshift, t + Tshift] with the lowest
energy price.

3.5. Reward

Specification of the reward function is notoriously difficult,
as it is generally hand-tailored and must reduce a rich and
often multi-dimensional environmental response into a sin-
gle metric. Although we include many possible rewards
in the code, we outline the two rewards that we feel most
accurately describe the environment. As we already demon-
strated in prior work the ability to reduce overall energy
consumption (Spangher et al., 2019), we endeavor to direct
this agent away from reducing consumption and towards
optimally shifting energy consumption to favorable times
of day.

3.5.1. SCALED COST DISTANCE

This reward is defined as the difference between the day’s to-
tal cost of energy and the ideal cost of energy. The ideal cost
of energy is obtained using a simple convex optimization. If
~d are the actual demand of energy computed for the day, ~g is
the vector of the grid prices for the day,E is the total amount
of energy, and dmin, dmax are 5% and 95% values of en-
ergy observed over the past year, then the ideal demands are
calculated by optimizing the objective: d∗ = mind d

T g sub-
ject to the constraints

∑10
t=0 d = E and dmin < d < dmax.

Then, the reward becomes: R(d) = d∗T g−dT g
d∗T g

, i.e. taking
the difference and scaling by the total ideal cost to normalize
the outcome.
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3.5.2. LOG COST REGULARIZED

Although the concept of the ideal cost is intuitive, the sim-
plicity of the convex optimizer means that the output en-
ergy is often an unrealistic, quasi step function. There-
fore, we propose an alternate reward of log cost regular-
ized. Following the notation from above, the reward is
R(d) = −dT g − λ(

∑
d < 10 ∗ (.5 ∗ bmax)) , where bmax

refers to the max value from the baseline. In practice, we set
λ to some high value like 100. The purpose of the regular-
izer is to penalize the agent for driving down energy across
the domain, and instead encourage it to shift energy.

4. Illustration of Features
We will now demo the environment’s functioning. All com-
parisons are done with a vanilla Soft Actor Critic RL agent
that learns throughout 10000 steps (where one step is equal
to one day), with a TOU pricing regime fixed at a single day.
The agent’s points are scaled between -1 and 1.

4.0.1. COMPARISON OF REWARDS TYPE

We present the effect of using the Log Distance Regularized
and the Scaled Cost Distance. Please see Figure 2, in the
Appendix, for side by side comparison of the reward types.
In this figure, you can see that not only is the agent capable
of learning an action sequence that accomplishes a lower
cost than if the simulated office workers were to respond
directly to the untransformed grid prices, but also differs in
how the learning is guided. The log cost regularized reward
accomplishes smoother prices that result in the agent defer-
ring most of the energy for the end of the day, whereas the
scaled cost distance reward allows for more energy earlier
in the day, guiding the simulated office worker to increase
energy gradually throughout the day.

4.0.2. COMPARISON OF OFFICE WORKER RESPONSE
FUNCTIONS

We present the effect of using different simulated office
workers on the output of energy demand. Please see Figure
3, in the Appendix, for a comparison of two types of sim-
ulated office workers. In the exponential response, we see
an example of how the office worker’s energy demand re-
sponds to points – that is, perhaps, too coarsely for a learner
to make much difference. Meanwhile, the Curtail and Shift
response demonstrates a much richer response, which en-
ables a learner to learn the situation and perform better than
the control.

5. Conclusion
We present technical details of a novel gym environment for
the testing of RL for energy DR within a single building. We

detail the design choices that we made while constructing
the environment. We then show demos of different reward
types and simulated office responses.

6. Simulating DR in your building
The environment we provide contains many ways to cus-
tomize your own building. You may choose the number
of occupants, their response types, baseline energies, grid
price regimes, and frequency with which grid price regimes
change. You may also choose from a host of options when
it comes to customizing the agent and its state space. Please
contact us if you are interested in deeper customization and
would like a tutorial on the code.

7. Future Work
7.1. Variants of the MDP

We plan to offer the user the choice between a step size
that is a day’s length and a step size that is an hour’s length.
The alteration can provide a more efficient state space repre-
sentation that provides for a fully observable MDP for the
agent, as well as a longer trajectory for action sequences
(i.e., ten steps for every trajectory to determine the ten hours
rather than a single step producing all ten hours), at which
RL tends to excel.

7.2. Reality Gap

Similar to existing simulations, e.g. Sim2Real (CITE
SIM2REAL), there is a gap between our environment and
reality. Future work in this direction will build more real-
istic response functions by relying on existing modelling
literature (CITE Planning Circuit from Fall’19).

7.3. OfficeLearn Competition

We plan to host a OfficeLearn competition in the future.
This competition will prioritize agents that can maximize
sample efficiency, due to the realistic time constraints of
a social game, and deferability of energy on a test set of
simulated office workers.
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Figure 2. A comparison of the Log Cost Regularized and the
Scaled Cost Distance rewards. The energy output of the simu-
lated office workers is drawn in light blue, and corresponds to the
primary axes. The grid prices are drawn in red, and refers to TOU
pricing. It corresponds to the secondary axes. The agent’s actions
are drawn in dark blue, is scaled between -1 and 1 to improve
readability of the plots, and correspond to the secondary axes.

Figure 3. A comparison of the “Exponential Deterministic Office
Worker” to the “Curtail and Shift Office Worker”. The energy
output of the simulated office workers is drawn in light blue, and
corresponds to the primary axes. The grid prices are drawn in red
and corresponds to the secondary axes. The agent’s actions are
drawn in dark blue, is scaled between -1 and 1, and correspond to
the secondary axes.


