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Abstract

Changes to the Earth’s climate are expected to negatively impact water resources in
the future. It is important to have accurate modelling of river flow and water quality
to make optimal decisions for water management. Machine learning and deep
learning models have become promising methods for making such hydrological
predictions. Using these models, however, requires careful consideration both
of data constraints and of model complexity for a given problem. Here, we use
machine learning (ML) models to predict monthly stream water temperature records
at three monitoring locations in the Northwestern United States with long-term
datasets, using meteorological data as predictors. We fit three ML models: a
Multiple Linear Regression, a Random Forest Regression, and a Support Vector
Regression, and compare them against two baseline models: a persistence model
and historical model. We show that all three ML models are reasonably able to
predict mean monthly stream temperatures with root mean-squared errors (RMSE)
ranging from 0.63-0.91 °C. Of the three ML models, Support Vector Regression
performs the best with an error of 0.63-0.75 °C. However, all models perform
poorly on extreme values of water temperature. We identify the need for machine
learning approaches for predicting extreme values for variables such as water
temperature, since it has significant implications for stream ecosystems and biota.

1 Introduction

The Earth’s water resources are increasingly under stress due to changes in climate and land use.
Current projections estimate decreases in water availability and worsening of water quality over the
coming decades. There is an urgent need for accurate predictions of water quantity and quality at
seasonal to decadal time-scales, and at local to regional spatial scales, to enable water managers to
make better decisions with an uncertain future. A particular variable of importance is stream water
temperature (WT), which affects many stream processes and also impacts fish and other aquatic biota
[Heck et al., 2018]].

Data-driven modeling of watershed variables such as discharge and groundwater levels that make
use of large-scale meteorological and watershed data has become increasingly possible with growing
amounts of publicly available water datasets [Kratzert et al., 2019, Miiller et al., 2019|]. Machine
learning (ML) and deep learning models are also being increasingly considered for predictions of
water quality, and specifically water temperatures due to the limitations of physics-based models to
conduct these predictions and the ability of ML to reduce complexity of models particularly at large
spatial scales [Carlisle et al., 2010, |Zhu and Piotrowski, 2020} Jia et al.l 2020].
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Making accurate water quality and other hydrological predictions presents several challenges since
watersheds are complex systems. In particular, several factors can influence stream temperature
including meteorological conditions, river discharge, snow melt, groundwater temperature, reservoir
and thermal power plant operations. It is typically difficult to find co-located datasets for potential
predictor variables. The choice of spatial and temporal scales for prediction is also dependent
on constraints of data availability and stakeholder needs. These decisions are problem dependent,
changing with both spatial and temporal scales.

Our goal is to determine if machine learning models can accurately predict water quality at the multiple
spatial (point to basin-scale) and temporal (sub-daily to decadal-scale) scales that are relevant for
disturbance events such as floods and droughts. Here, we start by using baseline ML models for
predicting monthly water temperature at individual station locations using publicly available data.
Understanding data dependencies with low-order models will help to better constrain the problem
and give a low-complexity baseline comparison for predicting water quality at larger spatial scales
and higher temporal resolutions. We pay special attention to how our models perform at predicting
extreme values of water temperature. These extreme temperatures typically determine the suitability
of the streams for fish habitat, and will be increasingly important since disturbances that adversely
impact stream temperature in the short-term are projected to be more frequent with climate change.

2 Methods

We develop models that predict water temperature using data from the CAMELS (Catchment
Attributes and Meteorology for Large Sample studies) dataset [[Addor et al., |2017] for three stations
in the Sandy River Basin. Stream temperature data for each station were retrieved from the United
States Geological Survey (USGS) National Water Information System (NWIS). We select model
input features (minimum and maximum air temperature, solar radiation, and month of year) through
exploratory data analysis. Following data preprocessing, we fit five models: a Multiple Linear
Regression (MLR), a Random Forest Regression (RF), a Support Vector Regression (SVR), a
historical model, and a persistence model. The historical, persistence, and MLR models do not have
any hyperparameters, however RF and SVR models both have several (such as the number of trees
and the regularization parameter.) Hyperparameter tuning for these models is performed using a
random search k-fold cross validation. More information on data, model construction and methods
are located in the appendix.

3 Results

Table 1 shows the root mean squared error (RMSE), mean absolute error (MAE) and the R? value
comparing observations to modeled results for each model at the three different stations for the
test period. All error metrics are reported with hyperparameters tuned using cross-validation with
RMSE and MAE in units °C. For RF, error is reported as the mean of 30 different initializations. The
standard deviations of ensemble are around 0.002 for all stations and thus are not shown. The three
statistical models (MLR, SVR, RF) outperform the baseline historical and persistence models with
considerably lower RMSE and MAE for all three stations. SVR performs the best at each station with
RMSE ranging from 0.63-0.75 °C. These results suggest that at monthly time scales, stream water
temperature can be predicted well using primarily air temperature and solar radiation data. The ability
to predict stream temperature at the monthly resolution with meteorological data can greatly increase
locations where predictions can be made by reducing the need for other co-located observations.

Other studies predicting daily water temperature using data driven approaches such as Artificial
Neural Networks, Bootstrap Aggregated Decision Trees, and Multilayer Perceptron neural networks
[Zhu et al., 2018] have shown optimal RMSE around 0.5-3 °C at individual stations. While our results
are not directly comparable with prior modeling results due to differences in temporal resolution, our
results suggest that regression ML models are appropriate for monthly station-based predictions.

Despite relatively good model performance (R? 0.9 or greater), we find model error is consistently
high for extreme values of water temperature (Appendix, Figure 1). For example, for the Fir Creek
station, all models tend to over-estimate temperature for low temperature values (below 4 °C), and
underestimate the high temperature extremes (above 12 °C). Peaks and troughs of water temperature,
as observed in the time-series, are mostly missed by all models for all stations (Appendix, Figure 2).



Table 1: Model Errors (°C). The predictions with the least error are highlighted in bold.

Station MLR SVR Random Forest Persistence Historical
Fir Creek RMSE 0.70  0.63 0.72 1.81 0.80
Fir Creeck MAE 055 049 0.54 1.51 0.65
Fir Creek R? 095 0.96 0.96 - -
South Fork RMSE  0.91 0.75 0.82 2.10 0.95
South Fork MAE 071  0.59 0.64 1.78 0.76
South Fork R? 093  0.95 0.95 - -
North Fork RMSE  0.91 0.70 0.76 1.58 0.78
North Fork MAE 0.72 0.53 0.58 1.30 0.61
North Fork R? 0.89 094 0.92 - -

4 Conclusions and Future Work

We have used regression-based ML models to predict monthly water temperatures with long-term
time-series data at individual monitoring stations. At monthly frequencies, SVR and RF models
predict water temperature relatively well with RMSE ranging from 0.63-0.86 °C, depending on the
station and model used. However, we find that the models perform less accurately at extreme values
of stream temperature, for many possible reasons including the lack of adequate training observations
and classical model error minimization approaches. We also find that discharge is not an important
input feature at the monthly resolution for these locations, but may be important for other locations
or daily predictions.

Our next steps are to expand the use of the models to greater spatial coverage and temporal scales.
This will require training models at more locations, increasing the temporal resolution to predict
daily temperatures, and using more complex architectures (if needed) with additional input features.
We will also examine model generalizability by fitting one model for multiple locations. At the
daily frequency, our exploratory data analysis has shown that seasonal meteorological and discharge
data have both auto-correlations and cross-correlations with water temperature that we will have to
consider. To make daily predictions, we will also integrate more complex gap filling methods to
enable use of stream temperature datasets with longer gaps (> 3 months). Our preliminary results
using the regression models for daily temperature predictions suggest that more input features
and likely lagged variables are required. We will also investigate use of more complex models
such as Multilayer Perceptrons, Long Short-Term Memory Networks, and Convolutional Neural
Networks using the approach outlined in Miiller et al. [2019]]. We will compare the outcomes of these
predictions with those from process-based and ML models of stream temperature. Finally, we will
test the sensitivity of our models to different meteorological data sources and input features. Our
preliminary results indicate that monthly model predictions are not significantly sensitive to changes
in different meteorological forcing data or combinations of input features.

Broader Impact

The overarching goal of this research is to determine whether data-driven models can predict water
quality responses of streams to disturbance events such as floods and droughts. These extreme
events occur across a variety of spatial and temporal scales- from local to regional, and from days to
months to years. Our preliminary results examine how ML models perform at the monthly time scale,
illustrating that although baseline regression-based ML models can reasonably predict mean monthly
temperatures, they perform poorly for extremes values. By improving methodology, scaling our
problem up to multiple locations and using more complex models we hope to accurately predict stream
temperatures across a range of spatiotemporal scales, although new mathematical approaches may
still be needed to capture the behavior following extreme events. Comparing models at different scales
and with different complexities will be helpful toward predicting water quality during disturbances at
decision-relevant spatial and temporal scales. These predictions are increasingly important to the
health of watersheds in the face of climate change, where disturbances such as floods and droughts
will become more frequent.
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Appendices

A Additional Methods and Results

We develop models that predict water temperature using data from the CAMELS (Catchment At-
tributes and Meteorology for Large Sample studies) dataset [Addor et al., 2017]. Stream temperature
data for each station were retrieved from the United States Geological Survey (USGS) National
Water Information System (NWIS) using our custom data integration tool BASIN-3D (Broker for
Assimilation, Synthesis and Integration of eNvironmental Diverse, Distributed Datasets), which
provides a generic framework to synthesize diverse, multiscale data across a variety of additional
data sources and environmental data types [Varadharajan et al.| 2019].

The CAMELS product consists of daily meteorological, discharge, and catchment attribute data for
monitoring stations in 672 pristine catchments across the continental U.S from 1980-2014. For this
analysis, we use Daymet meterological data at 1 km resolution that is mapped to the point stations in
the CAMELS dataset [Newman et al., 2015]]. Although we chose the CAMELS product since it has
compiled and quality checked data for the predictor variables, less than 50 of the 671 basins in the
CAMELS dataset have associated water temperature records, of which only three stations in Oregon
had near-complete stream temperature records from 1980-2014, with minimal gaps (<3 months). We
selected these three stations for our models, which are all located in the Sandy River basin of the
Northwestern United states — Fir creek near Brighton, OR (USGS HUC: 14138870), South Fork of
Bull Run River near Bull Run, OR (USGS HUC: 14139800) and North Fork of Bull Run River near
Multnomah Falls, OR (USGS HUC: 14138900).

We perform exploratory data analysis to understand the seasonality of the meteorological and
discharge variables and calculate time-lagged cross-correlations of water temperature with deseason-
alized versions of the variables to understand which variables are important at the monthly resolution.
Minimum and maximum air temperature and solar radiation are highly correlated with water temper-
ature, with a strong seasonal influence, and hence were chosen as input features for the ML models
and along with month of the year (indicative of seasonality). These input features are also identified
by [Zhu and Piotrowski| [2020] as common and meaningful features in predicting river and stream
temperatures for other modeling efforts. Notably, for these stations discharge and precipitation did
not have significant cross-correlations with water temperature.

Data are preprocessed by re-sampling to monthly frequency (using monthly means) and performing
minimal gap filling (< 3 months) by linear interpolation for one station. Data are next split into
training and test data at a 70/30 split. A standard scalar is fit separately to the training data for both
the input features (X) and predictors (y). This scalar is used to transform the data to zero mean and
standard variance for training (and again after predicting to transform back to the original units).

Following the data preprocessing, we fit five models: a Multiple Linear Regression (MLR), a Random
Forest Regression (RF), a Support Vector Regression (SVR), and baseline historical and persistence
models. The historical, persistence, and MLR models do not have any hyperparameters, however RF
and SVR methods both have several (such as the number of trees and the regularization parameter).
Hyperparameter selection is performed using a random search k-fold cross validation provided by
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Figure 1: Observed (x-axis) vs. predicted (y-axis) water temperature for MLR, RF and SVR models
at each of the three stations. Mean values are evenly distributed above/below the 1:1 line while
extreme values are more skewed.
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Figure 2: Example time series for Fir Creek station. Observed (blue), and predicted water temperature
for each model is shown for the test period (07/2004-12/2014). MLR predictions (blue), SVR (orange)
and RF (green) all tend to perform well at mean conditions but have difficulty capturing extremes.

sci-kit learn. For each of 5 folds, a random search is conducted across a pre-specified grid of model
hyperparameters. The parameters selected by cross-validation are next used to predict data in the test
region of the time series and calculate model error.

Observed and predicted stream temperature for each ML model and station are shown in Figure 1. A
time series of model fits for one station (Fir Creek) is shown in Figure 2. Peaks and troughs of water
temperature are mostly missed by all three models for all three stations.
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