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Abstract

Climate models are complicated software systems that approximate atmospheric
and oceanic fluid mechanics at a coarse spatial resolution. Typical climate forecasts
only explicitly resolve processes larger than 100 km and approximate any process
occurring below this scale (e.g. thunderstorms) using so-called parametrizations.
Machine learning could improve upon the accuracy of some traditional physical
parametrizations by learning from so-called global cloud-resolving models. We
compare the performance of two machine learning models, random forests (RF) and
neural networks (NNs), at parametrizing the aggregate effect of moist physics in a
3 km resolution global simulation with an atmospheric model. The NN outperforms
the RF when evaluated offline on a testing dataset. However, when the ML models
are coupled to an atmospheric model run at 200 km resolution, the NN-assisted
simulation crashes with 7 days, while the RF-assisted simulations remain stable.
Both runs produce more accurate weather forecasts than a baseline configuration,
but globally averaged climate variables drift over longer timescales.

1 Introduction

Machine learning has the potential to improve the accuracy of climate models but should take
advantage of our existing physical knowledge. Climate and weather models represent the motions of
the Earth’s atmosphere as a system of discretized ordinary differential equations (ODEs). Some of
these terms are well-known from first principles such as the Navier-Stokes equations and radiative
transfer. However, climate models typically have a horizontal grid-size of 100 km (Intergovernmental
Panel on Climate Change, 2014) and cannot resolve the dominant physical scales of some atmospheric
processes, especially turbulence, cumulus convection, and cloud-radiation interactions; these must
be parametrized. We call those processes that involve the formation of clouds and precipitation the
‘moist physics’. New simulations called global cloud resolving models (GCRMs), which explicitly
resolve key aspects of global cloud fields associated with precipitating cumulus convection by
using horizontal grid scales of less than 5 km (Satoh et al., 2019), are currently too expensive for
long climate simulations but contain a wealth of information about how clouds interact with the
large-scale—a valuable training dataset for inexpensive machine learning (ML) parametrizations.

Sub-grid-scale parametrization is a function approximation problem. Let the ODEs describing a
climate model can be divided into two components as follows

dxi

dt
= gi(x, t) + f(xi; θ). (1)

The known physics g account for large-scale atmospheric fluid mechanics as well as some set of
known physics, and are a function of the non-local state x. The vector x represents the state of the
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global atmosphere (e.g. temperature, humidity, and wind). Because the atmosphere mixes rapidly
in the vertical direction, parametrized physics f are typically assumed to depend only on some ML
parameters θ and the atmospheric column overlying a single horizontal grid cell i. We denote this
horizontally local state with xi ∈ Rm where m is the number of vertical grid points times the number
of 3D fields input to the parametrization. In this work, f will include sources and sinks of humidity
and heat due to moist physical processes.

Moist physics are conventionally handled by a suite of human-devised parametrizations encorporating
physical constraints and empirical knowledge. These typically assume an analytical sub-grid-scale
cloud model in statistical equilibrium with the large-scale environment (Arakawa, 2004), but recent
work proposes parameterizing moist physics using machine learning models trained from either
higher-fidelity simulations (Rasp et al., 2018; Brenowitz and Bretherton, 2018, 2019; Yuval and
O’Gorman, 2020; Krasnopolsky et al., 2010) or reanalysis data (McGibbon and Bretherton, 2019).

These ML schemes are trained offline, as a supervised learning problem, where the inputs xi and
outputs f are taken from a pre-computed dataset. Because this training fails to account for feedbacks
between gi and f , offline accuracy does not translate immediately into online accuracy when the ML
is coupled to the fluid dynamics solver and used to simulate the weather or climate. For example,
offline training will often yield a numerically unstable scheme that causes an online simulation
to crash within a matter of days (Brenowitz and Bretherton, 2019; Brenowitz et al., 2020). The
reasons behind this are starting to emerge. Brenowitz et al. (2020) demonstrated with formal stability
analysis that this instability is related to the linearized behavior of a neural network (NN) when
coupled to idealized wave dynamics. Also, feedback loops in coupled simulations can easily generate
out-of-sample inputs unlike any in the training sample. On the other hand, random forests (RFs) are
more stable online, likely because they can only predict averages of observed samples (O’Gorman
and Dwyer, 2018; Yuval and O’Gorman, 2020).

Prior work has focused on idealized aqua-planet configurations over a global ocean with fixed surface
temperature. While this is a useful prototyping configuration, ML parametrizations need to be
accurate with realistic geography and topography to be used in real-world forecast models. Therefore,
this manuscript has two goals: 1) demonstrate the feasibility of ML parametrization on a more
realistic atmospheric model and 2) compare the offline and online performance of RFs and NNs for
this problem.

We first introduce the atmospheric model we are trying to improve and which we use to generate the
training data in Section 2. Then, we explain the random forest and NN training processes and ML
formulation. We share online and offline performance results in Section 3 and conclude in Section 4.

2 Methods

2.1 The FV3GFS Atmospheric model

We use the FV3GFS (Harris et al., 2020) atmospheric model to generate both fine-resolution training
data and evaluate the accuracy at a coarser resolution. FV3GFS solves the three-dimensional Euler
equations over a spherical geometry discretized on a cubed-sphere grid (Putman and Lin, 2007).

To generate our training data, we run the FV3GFS with an approximate horizontal grid of 3 km. At
this resolution, FV3GFS can resolve the dominant motions due to deep convection Satoh et al. (2019),
so this model is run with only the microphysics scheme, radiative transfer, shallow, convection, and a
boundary layer turbulence scheme (Harris et al., 2020). Since this model has its own set of biases,
we include an additional Newtonian relaxation term to the temperature, pressure, and wind fields
which nudges this simulation towards a an observationally-derived gridded data product called a
reanalysis with a time scale of 1 day. We perform a 40 day run with this configuration at a NOAA
super-computing facility and save the full 3D state of the atmosphere and process-wise tendency
information, horizontally block-averaged to 200 km resolution, every 15 minutes.

The baseline model we are hoping to improve is based on the FV3GFS model run at a 200 km
resolution. This scale is typical for climate models, but cannot resolve many moist atmospheric
processes. We, therefore, assume that the known physics g only includes advection together with the
standard parametrizations of clear-sky radiation and turbulence, a configuration we call Clouds-off.
The ML will predict the remaining processes f . We compare ML-assisted runs with a baseline
configuration (All-physics) with the standard human-designed moist physics parametrizations.
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2.2 Machine learning models

For simplicity, the ML models will only predict sources of temperature and humidity, letting the
clouds-off physics handle frictional processes. We compute the terms-to-be-parametrized f as
budget residual of (1), so that fi = dxi/dt − gi. The total tendency dxi/dt is the sum of all the
physical-process tendencies in the fine-resolution data and the convergence of vertical temperature
and humidity fluxes. If initialized with the coarsened state of the fine-resolution model, the coarse-
resolution model will develop strong transients damaging the estimated known physics gi (Lynch,
2008). To generate smooth estimates of gi and xi, we nudge a coarse clouds-off simulation towards
the fine-resolution data with a 3-hour nudging timescale for temperature, humidity, pressure, and the
winds. The inputs features xi include the vertical profiles of temperature and humidity along with the
cosine of the solar zenith angle, the surface elevation, and the land-sea mask. The nudging time-scale
is a regularization parameter; longer time-scales will give smoother, but more biased estimates, of xi

and gi.

We compare the online and offline performance of RFs and NNs on this problem. The training
data consist of 130 randomly drawn snapshots from (August 5 through 31) and testing data are 72
snapshots from (September 1 through 7). Each snapshot contains 13 824 spatial samples. Both the
RF and NN are trained to minimize the mean-squared-error scaled by the inverse standard deviation
of each output feature. A RF is fit with a maximum depth of 13 and 13 ensemble members (one per
batch of 10 timesteps). A two layer NN, with 128 nodes per layer and ReLU activation, is fit with the
Adam optimizer (learning rate 0.001) with inputs normalized by the standard deviation and mean
computed over a single batch. A mini-batch size of 512 is used for NN training and 8 passes through
the training data (epochs) are completed.

3 Results

The RF and NN have comparable accuracy offline on the testing data (cf. Figure 1). The RF has a
worse coefficient of determination (R2) than the NN does at all pressure levels of the output. On the
other hand, the global and time average of the NN is more biased than the RF, likely because this
problem features highly non-Gaussian outliers that distort the MSE-based loss function of the NN.
Both the RF and NN predict too much global average heating in for pressure levels between 1000mb
to 400mb.

To test the online accuracy, we couple the NN and RF to the 200 km atmospheric model run with
clouds-off known physics, and perform 10-day hindcast simulations initialized at 0 UTC on August 5,
2016 and compare them to an all-physics simulation (cf. Figure 2). Even though the NN outperformed
the RF offline, the NN simulation crashes after around 7 days, while the RF simulation successfully
completes the 10-day simulation. This confirms findings that random forests are often stable for this
problem (O’Gorman and Dwyer, 2018) while neural network are not (Brenowitz et al., 2020).

We evaluate the predictive skill for each ML method at each forecast lead time using the root-mean
squared error (RMSE) and global average of precipitable water (PW) and 500mb geopotential height
(Z500) compared to the verification high-resolution training data across all grid columns around
the globe. Overall, the global average of Z500 for the NN remains closer to the verification until it
crashes, and it has the highest forecast skill of the three simulations at predicting Z500. The RF has
the lowest RMSE and smallest bias for PW for a few days, but eventually starts to dry out. Overall,
the baseline model is more robust and has less systematic drift in PW and Z500, but the ML-assisted
runs have better skill (lower RMSE) for forecasts for up to 5 days.

4 Conclusion

We have compared how well a random forest and a simple neural network perform when they replace
the human-designed moist-physical parametrizations of a coarse resolution model. Unlike past
studies, we have trained the RF and NN with the exact same training data, a global cloud-resolving
simulation with an approximate resolution of 3km. To our knowledge, this is the first such clean
comparison in the literature.2 Moreover, this simulation is significantly more complex that the
idealized datasets used in past work because it includes a realistic land surface and topography.

2Since the initial submission of pre-print, Yuval et al. (2020) have also performed a similar comparison.
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Figure 1: Offline accuracy of ML-predicted temperature source (i.e. heating) for the NN and RF.
(a) area-weighted R2 scores and (b) area-weighted averages computed over the testing times. The
predictions and truth are interpolated to fixed pressure levels before computing the metrics.
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Figure 2: Online skill of the NN and RF. Compares the forecast accuracy in terms of RMSE for
precipitable water (a) and 500mb geo-potential height (c). The respective global averages are shown
in (b) and (d).

The NN is more accurate offline than the RF, but is not numerically stable online (i.e. when coupled
to known physics). Because the training process does not account for feedbacks between the ML and
the known physics, online simulations can quickly produce samples unlike any seen in the training
data. Because RFs predict outputs within the convex hull of their training data, they are likely more
robust than NNs when forced to extrapolate to such new samples. Future work should focus on
finding an offline input-output prediction problem that translates to good online performance.

The global average of the NN predictions are also more biased offline, possibly because its training
procedure is less robust to extreme rainfall events in the training data. This offline bias could possibly
be addressed using robust loss functions (e.g. Huber loss or mean absolute error).
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Broader Impact

If successfully expanded upon, this work promises to improve the physical models we use to forecast
weather and climate with machine learning. In particular, our goal is to improve accuracy of
precipitation forecasts with these ML moist physics parametrizations. Such forecasts, with quantified
uncertainty, of precipitation trends and extremes in a changing climate will allow policymakers and
the general public to make better-informed decisions about climate impacts on many aspects of
society and the natural world.
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