
EarthNet2021: A novel large-scale dataset and
challenge for forecasting localized climate impacts.

Figure 1: The EarthNet2021 dataset, an overview visualization of a single sample.
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Abstract
Climate change is global, yet its concrete impacts can strongly vary between
different locations in the same region. Regional climate projections and seasonal
weather forecasts currently operate at the mesoscale (> 1 km). For more targeted
mitigation and adaptation, modelling impacts to < 100 m is needed. Yet, the
relationship between driving variables and Earth’s surface at such local scales
remains unresolved by current physical models and is partly unknown; hence,
it is a source of considerable uncertainty. Large Earth observation datasets now
enable us to create machine learning models capable of translating coarse weather
information into high-resolution Earth surface forecasts encompassing localized
climate impacts.Here, we define high-resolution Earth surface forecasting as video
prediction of satellite imagery conditional on mesoscale weather forecasts. Video
prediction has been tackled with deep learning models. Developing such models
requires analysis-ready datasets. We introduce EarthNet2021, a new, curated
dataset containing target spatio-temporal Sentinel 2 satellite imagery at 20 m
resolution, matched with high-resolution topography and mesoscale (1.28 km)
weather variables. With over 32000 samples it is suitable for training deep neural
networks. Comparing multiple Earth surface forecasts is not trivial. Hence, we
define the EarthNetScore, a novel ranking criterion for models forecasting Earth
surface reflectance. For model intercomparison we frame EarthNet2021 as a
challenge with four tracks based on different test sets. These allow evaluation of
model validity and robustness as well as model applicability to extreme events and
the complete annual vegetation cycle. In addition to forecasting directly observable
weather impacts through satellite-derived vegetation indices, capable Earth surface
models will enable downstream applications such as crop yield prediction, forest
health assessments, coastline management, or biodiversity monitoring. Find data,
code, and how to participate at www.earthnet.tech.
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Figure 2: Predicting localized climate impacts can be done in a variety of ways. EarthNet2021 places
Earth surface prediction as an intermediate task (green path). This gives directly obtainable impacts
(NDVI) and enables further analyses to extract impacts from future Earth surface reflectance (lower
dark green path in gray box). Compared to directly modeling any given impacts, where target labels
are scarce, large amounts of satellite imagery are available. Hence, localized prediction of climate
impacts becomes feasible since self-supervised deep learning can be leveraged.

1 Motivation

The terrestrial surface of Earth is home to most of the planet’s species and houses human economical
and societal systems. As already noticed by Alexander von Humboldt, climate is a key factor shaping
vegetation cover and soils on Earth. Yet, importantly, the impact of the climatic drivers onto the surface
is highly modulated by the fine-grained local conditions, such as geomorphology, geological substrate
and vegetation and animals themselves. In particular extreme events can have very heterogeneous
impacts at the local scale depending on the conditions (Kogan, 1990). For example, ecosystems next
to a river might survive droughts better than those on south-facing slopes. However, the resolution
of seasonal weather predictions is not fine enough to deploy effective prevention and mitigation
strategies. Machine learning (Reichstein et al., 2019; Rolnick et al., 2019) can step in to increase
resolution.

Predicting localized climate impacts can be tackled in three main ways (see Fig. 2). All approaches
make use of seasonal weather forecasts (2 – 6 months ahead; Cantelaube & Terres, 2005). The
first approach (Fig. 2, path 1), aims to reconstruct hyper-resolution weather forecasts for particular
geolocations using statistical (Boé et al., 2006; Vrac et al., 2007) or dynamical (Lo et al., 2008)
downscaling, that is, correlating the past observed weather with past mesoscale model outputs and
using the estimated relationship. The downscaled weather can then be used in mechanistic models
(e.g. of river discharge) for impact extraction. However, weather downscaling is a difficult task
because it requires ground observations from weather stations, which are sparse.

A more direct way (Fig. 2, path 2) is to correlate a desired future impact variable with past data.
Doing this for tangible impacts such as on crop yield (Peng et al., 2018) again suffers from a lack of
data. An alternative is to forecast impacts obtainable from remote sensing, such as the normalized
differenced vegetation index (NDVI), yet this has only been done at coarse resolution (Tadesse et al.,
2010; Asoka & Mishra, 2015; Kraft et al., 2019; Foley et al., 2020).

Instead, we propose Earth surface forecasting as video prediction of satellite imagery with guidance
of mesoscale weather projections for forecasting localized weather impacts (Fig. 2, path 3). From
satellite imagery, we can directly observe NDVI and thus climate impacts on vegetation. Additionally,
it can also be used to extract further processed weather impact data products, such as the biodiversity
state (Fauvel et al., 2020), crop yields (Schwalbert et al., 2020), soil moisture (Efremova et al.,
2019), or ground biomass (Ploton et al., 2017). We believe Earth surface forecasting is feasible since
numerous studies suggest predicting satellite imagery works under a range of specific conditions (Zhu
et al., 2015; Das & Ghosh, 2016; Hong et al., 2017; Requena-Mesa et al., 2019; Lee et al., 2019).

EarthNet2021 aims at providing analysis-ready data and a benchmark challenge for model intercom-
parison on the broad area of Europe to accelerate model development.
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Figure 3: Panel (a) shows the spatial distribution of the multicubes in EarthNet2021. Panel (b) shows
the monthly number of multicubes and panel (c) shows the data quality measured by the percentage
of masked (mainly cloudy) pixels over both, months and latitude.
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Figure 4: This dataset generation scheme roughly
describes how we obtain the analysis-ready Earth-
Net2021 dataset from raw, public geospatial
datasets.

The EarthNet2021 dataset combines three pub-
licly available EU-funded data sources into
spatio-temporal data samples for training deep
learning models. Each sample, which we call
a data multicube, is based on a timeseries of
Sentinel 2 level 2A imagery (Louis et al., 2016)
combined with a timeseries of daily climatic
conditions from E-OBS (Cornes et al., 2018)
and the EU-DEM digital surface model (Bash-
field & Keim, 2011). Training deep learning
models with raw geospatial data is usually not
possible and there is need for analysis-ready
datasets. An overview of the dataset generation
pipeline, turning the raw geospatial data into the
analysis-ready EarthNet2021 dataset, is shown
in Fig. 4.

After data processing, EarthNet2021 contains over 30000 samples, which we call data multicubes. A
single multicube is visualized in Fig. 1. It contains 30 5-daily frames (128× 128 pixel or 2.56× 2.56
km) of four channels (blue, green, red, near-infrared) of satellite imagery with binary quality masks
at high-resolution (20 m), 150 daily frames (80 × 80 pixel or 102.4 × 102.4 km) of five dynamic
climatic variables (precipitation, sea level pressure, mean, minimum and maximum temperature)
at mesoscale resolution (1.28 km) and a static digital elevation model at both high- and mesoscale
resolution.

The entirety of the multicubes have been split across the training set and various test sets, which are
related to different tracks in the EarthNet2021 challenge (sec. 3). EarthNet2021 is an imbalanced
dataset, as during the data generation there is a direct trade-off between high data quality and low
selection bias. For example, high-quality (cloud-free) samples are mostly found during summer on
the Iberian Peninsula, whereas there are few consecutive weeks without clouds on the British Islands.
In Fig. 3 we try to make some of the selection bias visible by showing the spatial and temporal
distribution of the multicubes in EarthNet2021 across the different sets.
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Figure 5: Evaluation pipeline for models on Earth-
Net2021. For predicting the tT target frames, a
model can use satellite images from the tC con-
text frames, the static DEM and mesoscale climatic
variables including those from the target time steps.

Test set ENS MAD OLS EMD SSIM

IID 0.26 0.23 0.32 0.21 0.33
OOD 0.25 0.22 0.32 0.21 0.31
Extreme 0.19 0.22 0.28 0.16 0.16
Seasonal 0.27 0.23 0.38 0.20 0.32

Table 1: Persistence baseline performance.

The EarthNet2021 challenge aims at Earth sur-
face forecasting model intercomparison. Due
to its novelty, there is not yet a commonly used
criterion for Earth surface predictions.

EarthNetScore. Specifically for Earth sur-
face forecasting, we define the EarthNetScore
as a ranking criterion balancing multiple goals
in a harmonic mean as follows:

ENS =
4

( 1
MAD

+ 1
OLS

+ 1
EMD

+ 1
SSIM

)
. (1)

The four components of ENS are the median
absolute deviation MAD; the difference of ordi-
nary least squares linear regression slopes of pix-
elwise NDVI timeseries OLS; the Earth mover
distance EMD between pixelwise NDVI time
series and the structural similarity index SSIM.
All component scores are modified to work prop-
erly in the presence of a data quality mask, nor-
malized to lie between 0 (worst) and 1 (best)
and rescaled to match difficulty. Since Earth
surface forecasting is a stochastic task models
may predict multiple future trajectories. Over a
full test set, we aggregate these by only considering the best predicted trajectory per multicube (in
line with video prediction common practice). Then we average the component scores of these and
calculate the ENS by feeding the averages to eq. 1. Thus, the ENS ranges from 0 (bad) to 1 (perfect).

Tracks. Multiple models are compared within the EarthNet2021 challenge by measuring their
EarthNetScores on various tracks (see Fig. 5). The main (IID) track checks model validity. Models get
10 context frames of high resolution 5-daily multispectral satellite imagery (time [t-45, t]), mesoscale
dynamic climate conditions for in total 150 past and future days (time [t-50, t+100]) and static
topography at both resolutions. Models shall output 20 frames of sentinel 2 bands red, green, blue
and near-infrared for the next 100 days (time [t+5, t+100]). These predictions are evaluated with
the EarthNetScore on unmasked (cloud-free) pixels from the ground truth. The Robustness (OOD)
track checks model performance on an out-of-domain (OOD) test set, since even on the same satellite
data, deep learning models might generalize poorly across geolocations (Benson & Ecker, 2020).
Furthermore, EarthNet2021 contains two tracks focused on Earth system science hot topics, which
should both be understood as more experimental. The extreme summer track contains cubes from
the extreme summer 2018 in northern Germany (Bastos et al., 2020), with 4 months of context (20
frames) starting from February and 6 months (40 frames) starting from June to evaluate predictions.
The seasonal cycle track contains multicubes with 1 year (70 frames) of context frames and 2 years
(140 frames) to evaluate predictions, thus checking models applicability to the vegetation cycle.

EarthNet2021 Framework. To facilitate research we provide the EarthNet2021 framework. It
contains 1) the packaged evaluation pipeline as the EarthNet2021 toolkit which leverages multi-
processing for fast inference, 2) the model intercomparison suite, which gives one entry point for
running a wide range of models and 3) a naive baseline (cloud-free mean, see table 1) and templates
for PyTorch and Tensorflow. Further information can be found on www.earthnet.tech.

4 Outlook

Forecasting impacts of climate and weather on the Earth surface is a simultaneously societally
important and scientifically challenging task. With the EarthNet2021 dataset, first models for Europe
can be designed and the EarthNet2021 challenge offers a model intercomparison framework for
identifying their strengths and limitations. We expect deep learning based video prediction models
to be great starting points for solutions, in perspective allowing for high-resolution prediction of
localized climate impacts.
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