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Abstract

We develop physics-constrained and control-oriented predictive deep learning
models for the thermal dynamics of a real-world commercial office building. The
proposed method is based on the systematic encoding of physics-based prior
knowledge into a structured recurrent neural architecture. Specifically, our model
mimics the structure of the building thermal dynamics model and leverages penalty
methods to model inequality constraints. Additionally, we use constrained matrix
parameterization based on the Perron-Frobenius theorem to bound the eigenvalues
of the learned network weights. We interpret the stable eigenvalues as dissipa-
tiveness of the learned building thermal model. We demonstrate the effectiveness
of the proposed approach on a dataset obtained from an office building with 20
thermal zones.

1 Introduction

Energy-efficient buildings are one of the top priorities to sustainably address the global energy
demands and reduction of the CO5 emissions [[1}2]]. Advanced control strategies for buildings have
been identified as a potential solution with projected energy saving potential up to 28% [3} 4} 5]. The
current state of the art approaches in the domain are based on constrained optimal control methods
and heavily depend on the mathematical models of the building dynamics [6, (7} I8} 9, [10]].

The building thermal behavior is characterized by high-dimensional, nonlinear, and often discontinu-
ous dynamics, for which modeling requires expertise and development time [[11} [12} [13]. Moreover,
high computational demands and non-differentiability can easily cast the physics-based model as
not suitable for efficient gradient-based optimization that is typically used in various applications.
Data-driven system identification typically represents a more cost-efficient alternative [[14} 15,16} [17].
However, purely-black box models require a large amount of data and may not generalize well outside
the training distribution [[18,[19]. On the other hand, identifying accurate and reliable physics-based
models with constrained from data remains a challenging task and involves solving difficult non-
convex optimization problems [20} 21} 22]]. As a consequence, many of the current control-oriented
modeling approaches for buildings still rely on crude approximations assuming low-order linear
dynamics [23} 24} 25]], which may hamper the overall potential control performance [26].

In this paper we show how to train physics-constrained recurrent neural dynamics models tailored to
efficiently learn the building thermal dynamics in an end-to-end fashion, with physically coherent
generalization, from small datasets. From a deep learning perspective, the presented model is
inspired by a family of neural state-space models (SSM) [27, 128|129, |30, 131]], representing structurally
modified vanilla RNNs tailored for the modeling of dynamical systems for control. To the author’s
best knowledge, this is the first combined use of structured recurrent neural architectures with
physics-inspired constraints applied to a real-world building thermal dynamics modeling problem.
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2 Methods

Building Thermal Dynamics: When developing predictive models for control purposes, one has
to balance model complexity, robustness, and accuracy. The typical building envelope dynamics is
represented by a model with a graph structure shown in Fig. [Ta] Mathematically, the thermal building
model is given as the following differential equation with nonlinear input and disturbance dynamics:

Xt4+1 = Axt + But + fd(dt); (13)
vy = Oxy, (1b)
u; = mycpATy, (Ic)

where x; and y; represent the values of the states (envelope temperatures), and measurements
(zone temperatures) at time ¢, respectively. Disturbances d; represent the influence of weather and
occupancy behavior. Heat flows delivered to the building wj are the product of mass flows 1y,
difference of the supply and return temperatures AT, and the specific heat capacity constant cp.

When the model is built with perfect knowledge from first principles, it is physically interpretable.
For instance, the A matrix represents 1-D heat transfer between the spatially discretized system
states. B matrix defines the temperature increments caused by the convective heat flow generated
by the HVAC system, while f; captures highly nonlinear thermal dynamics caused by the weather
conditions or internal heat gains generated by the occupancy. However, every building represents
a unique system with different operational conditions. Therefore, obtaining the parameters of the
differential equations (I from first principles is a time-consuming, impractical task.
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(a) Structure of physics-based building thermal model. (b) Structured recurrent neural dynamics model.

Figure 1: Generic structure of physics-inspired recurrent neural dynamics model architecture. Weights
of individual neural blocks f, are parametrized by linear maps with constrained eigenvalues, while
component outputs are subject to penalty constraints parametrized by common activation functions.

Structured Recurrent Neural Dynamics Model:  Fig. [Tb| shows the overall architecture of the
physics-inspired neural dynamics model for partially observable systems. To further promote
physically coherent behavior, the neural component blocks f, are parametrized by linear maps
with constrained eigenvalues and regularized with penalty functions, as explained in the following
sections. The block-structured recurrent neural dynamics model is defined as:

X1 = fo(X¢) + fu(ug) + fa(de) (2a)
Yyt = fy(Xt) (Zb)
X0 = fol[y1-n;---5¥0]) (2¢)

Here f,, fu, and f; represent decoupled neural components of the overall system model, correspond-
ing to state, input, and disturbance dynamics, respectively. We assume only partially observable
systems where states x represent latent dynamics. As a consequence, we need to use state observer
given as additional neural component, f,, encoding a past N-step window of observations y onto
initial state conditions x. During training, the model is unrolled and trained on an N-step ahead
prediction window. The main advantage of the block nonlinear over unstructured black-box state-
space model lies in its structure. The decoupling allows us to leverage prior knowledge for imposing
structural assumptions and constraints onto individual blocks of the model.



Eigenvalue Constraints: One key physics insight is that building thermal dynamics represents
a dissipative system with stable eigenvalues. This inspired us to enforce physically reasonable
constraints on the eigenvalues of a model’s weight matrices. We leverage the method based on the
Perron-Frobenius theorem, which states that the row-wise minimum and maximum of any positive
square matrix defines its dominant eigenvalue’s lower and upper bound, respectively. Guided by this
theorem, we can construct a state transition matrix A with bounded eigenvalues:

M = )\max - ()\max - Amin)o—(]-vll) (33)
A — exp(A';) o
YT exp AT

We introduce a matrix M which models damping parameterized by the matrix M’ € R"=*"=_We
apply a row-wise softmax to another parameter matrix A’ € R™=*"=_ then elementwise multiply by

M to obtain our state transition matrix A with eigenvalues lower and upper bounds Api, and Apax.

(3b)

Inequality Constraints via Penalty Methods: Using an optimization strategy known as the
penalty method, we can add further constraints to our model such that its variables remain within
physically realistic bounds. We enforce this property by applying inequality constraints via penalty
functions p(y) for each time step ¢:

1

pyny,): ¥, <yitst = sp=max(0, =y, +y,) (4a)

I

p(ye,¥e): yi—s{ <Y, s{ = max(0, y; — ¥,) (4b)

The constraints lower and upper bounds are given as y X and y,,, respectively. The slack variables s%

and sg indicate the magnitude to which each constraint is violated, and we penalize them heavily in
the optimization objective by a large weight on these additional terms in the loss function.

Multi-term Loss Function: We optimize the following loss function augmented with regularization
and penalty terms to train the recurrent neural model (2)) unrolled over IV steps:

N
1
Luse (V™ V10) = = > Iy = il 3+ Qulbxe = i3+ s
t=1

heallsT 13 + Qigl 87113 + QfieqlIs?* 113

The first term of the loss function computes the mean squared error between predicted y and
observed outputs y™f over N time steps and represents our primary objective. The term x; — X;_;
represents state difference penalty promoting learning of smoother and physically more plausible
state trajectories. The violations of the inequality constraints defining the boundary conditions of
outputs y, are penalized by incorporating weighted slack variables s¥. Thanks to the block-structured
dynamics, we can constrain the dynamical contribution of inputs f,, and disturbances f; towards the
overall dynamics via two additional terms in the loss function. This allows us to limit the effect of
the external factors to be bounded within physically plausible ranges.

3 Experimental Case Study

Dataset and Experimental Setup The objective is to develop a control-oriented thermal dynamics
model of a commercial office building, given a limited amount of measurement data. The time series
dataset D is given in the form of tuples with input, disturbance, and output variables, respectively.

D = {( §1)7 dgl)? ygl))7 (uz(EQA’ dE:zA? YE:ZA)7 sty (ugijAa dgzNAa YEQNA)}a (6)
where ¢ = N7 represents index of n batches of time series trajectories with N-step horizon. The data

is sampled with sampling time A = 15 min. We have in total n,, = 20 output variables corresponding
to zone temperatures, n,, = 40 input variables representing HVAC temperatures and mass flows, and
ngq = 1 disturbance variable for ambient temperature forecast. We use min-max normalization to
scale all variables between [0, 1]. The dataset consists of 30 days, which corresponds to only 2880
datapoints. We group the dataset into evenly split training, development, and test sets, 960 data points



each. We implement the models using Pytorch [32], and train with randomly initialized weights
using the Adam optimizer [33]] with a learning rate of 0.003, and 5,000 gradient descent updates.
We select the best performing model on the development set, and report results on the test set. The
state estimator f, is a fully connected neural network, while neural blocks f, are represented by
recurrent neural networks with 2 layers and 80 nodes. We range the prediction horizon as powers

of two 2™ withn = 3,...,6, which corresponds to 2 up to 16 hour window. The relative weights
of the multi-term loss function are Q¢ = 0.2, Q%eq = 1.0, Qjpeq = 0.2, and Qi‘?leq = 0.2. We set

Amin = 0.8 and A\j.x = 1.0 for stability and dissipativity of learned dynamics.

Results: Fig. 5] assess the simulated open-loop and N-step MSE performance of the recurrent
model with and without physics-constraints and structure. The denormalized performance of best-
performing models is compared in Tab[2] We observe that imposing physics-inspired structure
and constraints not only yields 15% reduction of error but allows us to train models with a larger
prediction horizon N. The open-loop MSE of the best-performing constrained and structured model
corresponds to 0.488K. In comparison, the state of the art gray-box system identification methods
trained on a similar amount of data reports open-loop MSE roughly equal to 1.0K [20]. Hence our
preliminary results show more than 100% improvement against state of the art in literature. We also
demonstrate the capability to generalize complex dynamics over 30-days from a small dataset of
10-days. For further results analysis, see the appendix with the display of open-loop trajectories and
the effect of the eigenvalue constraints.

Table 1: Test set MSE of best constrained structured, and unconstrained unstructured model.

Structure Constrained N  N-step [K] Open-loop [K]
Structured Y 64 0.4811 0.4884
Unstructured N 16 0.5266 0.5596
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(a) Open-loop MSE. (b) N-step MSE.

Figure 2: Comparison of open-loop and N -step ahead MSE evaluated on a test set using structured
and unstructured models with and without constraints.

4 Conclusions

Reliable data-driven methods which are cost effective in terms of computational demands, data col-
lection, and domain expertise have the potential to revolutionize the field of energy-efficient building
operations through wide-scale acquisition of building specific, scalable, and accurate prediction
models. We presented a constrained deep learning method for sample-efficient and physics-consistent
data-driven modeling of building thermal dynamics. Our approach does not require the large time
investments by domain experts and extensive computational resources demanded by physics-based
emulator models. Based on only 10 days’ measurements, we greatly improve on prior state-of-the-art
results for a modeling task using a real-world large scale office building dataset. A potential limitation
of the presented approach is the restrictiveness of the used constraints, where wrong initial guess of
the eigenvalue and penalty constraints bounds may lead to decreased accuracy of the learned model.
Future work includes a systematic comparison against physics-based emulator models and other
standard data-driven methods. Authors also plan to use the method as part of advanced predictive
control strategies for energy-efficient operations in real-world buildings.
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A Extended Results

The objective is to develop a control-oriented model of the thermal dynamics of a commercial office
building, given only a limited amount of time series measurement data.

A.1 Real-world Building Dataset and Experimental Setup

Real-world Building Dataset: The building used in this study is a commercial building in Richland,
WA described in [34]]. Heating and cooling are provided by a variable air volume (VAV) system
served by 4 air handling units (AHUs) serving 24 VAV boxes (zones). Each VAV box is equipped
with a hot water reheat coil. A boiler, fed by natural gas, supplies hot water to the reheat coils and
AHU coils. Chilled water is supplied by a central chiller plant.

Data from specific sensors for the above-mentioned buildings is stored in a database, which communi-
cates with the building management system (BMS) and polls data for these sensors at a time resolution
of 1 minute. A total of more than 600 sensors report data corresponding to measurements such as
supply and return temperatures of air and water, air, hot water and cold water flow rates, energy and
power consumption, set-points for the underlying control systems, occupancy status in zones, and
outside air temperature. Data was cleaned and pre-processed according to the methodology described
in [34]]. The same dataset was used in [34] to model the building’s power consumption and zone
temperatures using RNN model with LSTM architecture. The authors have been able to achieve high
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Figure 3: Office building of interest.

prediction accuracy on a single step ahead prediction compared to other standard machine learning
models such as linear regression, support vector regression, and random forests. However, due to
the purely black-box nature and 1-step ahead loss function, the model in [34] does not explicitly
guarantee physical constraints and is not suitable for long-term predictions of the building’s thermal
behavior. This case study demonstrates improved accuracy, generalization, long-term prediction
capabilities, and physically coherent and interpretable dynamic behavior of the learned dynamical
model with 20 thermal zones. Hence, considering a model with higher complexity compared to the
2-zone model presented in [34].

Experimental Setup: We implement the presented model architectures using Pytorch [32]], and
train with randomly initialized weights using the Adam optimizer [[33]] with a learning rate of 0.003,
and 5, 000 gradient descent updates. We select the best performing model on the development set
from a directed hyperparameter search. All neural network blocks are designed with GELU activation
functions [33]. The state estimator is encoded with a fully connected neural network, while individual
neural blocks f, are represented either by standard multilayer perceptron (MLP), recurrent neural
network (RNN), or residual neural network (ResNet), respectively, each with 2 layers and 80 nodes.
We range the prediction horizon as powers of two 2" with n = 3, ..., 6, which corresponds to 2 up
to 16 hour prediction window. The relative weights of the multi-term loss function for constrained
models are Qgx = 0.2, Q?r’leq = 1.0, Qi‘l‘wq = 0.2, and Qﬂleq =0.2. We set Apin = 0.8 and A\ = 1.0
for stability and low dissipativity of learned dynamics when using eigenvalue constraints.

A.2 Results and Analysis

This section assesses the open-loop and N-step simulation performance of trained recurrent neural
dynamics models with and without structure and constraints, respectively. We systematically compare
and analyze the added value of the block structure, penalty, and eigenvalue constraints, where Tab. 2]
summarizes the best performance of the modeling variants. Moreover, we discuss the interpretability
of the proposed data-driven models through the optics of building physics.

Best Performing Model: As reported in Tab. 2| we achieve the best performance with constrained
and structured recurrent neural model @) The best model scores 0.0052, 0.0091, and 0.0143, on



Table 2: Test set MSE of best-performing structured, unstructured, constrained and unconstrained
models, respectively.

Structure Constrained Weights N N-step [K] Open-loop [K]
Structured Y Linear 64 0.4811 0.4884
N Perron-Frobenius 16 0.4720 0.5043

Unstructured Y Linear 64 0.5380 0.5446
struetur N Linear 16 0.5266 0.5596

normalized open-loop MSE evaluated on the test, dev, and train set, respectively. From a physical
perspective, the denormalized open-loop MSE corresponds to roughly 0.18K, 0.31K, and 0.49K
errors per output, respectively. This demonstrates the ability to generalize the dynamics over the
period of 30 days, given only 10 days of training data. In comparison, the state of the art gray-box and
black-box system identification methods trained on a similar amount of data reports open-loop MSE
greater than 1.0K [20, 36| 37]]. Hence our results show more than 100% improvement against state
of the art. However, a more rigorous comparison needs to be performed to compare the prediction
errors with standard gray-box methods using the same datasets. For visual assessment, Fig. 4] shows
normalized open-loop simulation trajectories of best performing structured dynamics model on the
train, dev, and test set, represented by gray zones, respectively.

Figure 4: Open-loop trajectories of the learned (blue) and ground truth (red) multi-zone building
thermal dynamics.

Effect of Prediction Horizon and Penalty Constraints: Fig. [5]shows test set performance with
open-loop MSE and N-step ahead MSE losses for structured and constrained model variants trained
with increasing prediction horizon N. As expected, Fig. [5b| shows that N-step MSE rises with a
longer prediction horizon in the training loss function because learning long-term predictions is
generally a more difficult task. Tab. [2]reports larger MSE gaps between N-step and open-loop loss
for smaller prediction horizon N = 16. On the other hand, larger horizon N = 64 minimizes the
gap between N-step loss function and open-loop performance, hence providing a more accurate
assessment of the desired performance measure. Also, as shown in Fig.[5a] longer prediction horizon
tends to improve the overall open-loop simulation performance of all constrained models. The same
does not hold for unconstrained models for which the performance starts to deteriorate with a horizon
longer than 16. This indicates that including penalty constraints in the training loss function helps
to improve the model accuracy over longer prediction horizons. The intuition here is simple; by
confining the system outputs into a physically meaningful subspace, the model is less likely to learn
diverging long-term trajectories.
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Figure 5: Effect of penalty constraints on open-loop and N -step ahead MSE evaluated on a test set
using structured and unstructured models, with increasing training prediction horizon N.

Effect of Physics-inspired Structure: Fig.[5]demonstrates that adding building-physics inspired
structure into the neural state-space model undeniably improves both open-loop and N-step MSE.
Results in Tab. 2] confirm that both constraints and structure have a positive influence on the open-
loop performance of trained models, while structure being a more significant modeling assumption.
Applying both structure and constraints yields a 15% reduction in prediction error against unstructured
and unconstrained neural state-space model counterparts. By decoupling the state, control action, and
disturbance dynamics into separate blocks modeled by neural networks, we prevent the model from
learning lumped dynamics behavior. Each block can now learn different nonlinear transformations,
which can be independently interpreted as structural heat transfer dynamics for states f,, HVAC
dynamics for inputs f,,, and weather and occupancy thermal dynamics for disturbance signals f;.

Effect of Neural Blocks Architecture: Fig. [6] shows the effect on open-loop and N-step MSE
of using different neural architectures for representing the individual blocks of structured and
unstructured neural state-space models, respectively. We focus our analysis on best-case open-loop
performance displayed in Fig.[7a] Please note the y-axis is in the logarithmic scale. Surprisingly,
models with ResNet architectures are less accurate than best performing RNN or MLP across all
prediction horizons and deteriorate fast with increasing prediction horizon. The cause of ResNets’
poor performance is hard to estimate at this point, and more in-depth analysis needs to be performed
in the future. On the other hand, the performance of models with both RNN and MLP blocks is
comparable and scales well also with larger horizons. While models with RNN blocks tend to perform
better for shorter horizons, models with MLP architecture score better for the largest time horizon
of 64 steps. This might be linked with well known RNN issues, such as vanishing, and exploding
gradient problems causing difficulties when learning long-term dependencies [38], 39].
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(a) Open-loop MSE. (b) N-step MSE.

Figure 6: Effect of neural blocks architecture on open-loop and N -step ahead MSE evaluated on a
test set using structured and unstructured models, with increasing training prediction horizon N.



Effect of Weight’s Eigenvalue Constraints: Fig. [7| shows test set performance with open-loop
MSE and N-step ahead MSE losses for structured and unstructured model variants with and without
eigenvalue constraints via p f factorization of weights. Due to restrictive nature of the p £ factorization,
in Fig. [7b] we observe larger increase in N-step MSE compared to unconstrained 1inear weights
for most of the cases. However, as shown in in Fig. [7a] the eigenvalue constraints improve the
performance of the structured models for shorter prediction horizons, as a consequence of the
imposed inductive bias towards learning dissipative heat transfer dynamics. On the other hand,
unstructured models do not benefit from using pf factorization at all. The reason is that imposed
eigenvalue constraints are inspired by the building envelope dynamics exclusively modeled with f,
map of structured models (]Z[) In contrast, unstructured models learn lumped envelope, HVAC, and
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disturbance dynamics, hence they fail to benefit from any block-specific priors.

Figure 7: Effect of eigenvalue constraints via pf factorization on open-loop and N -step ahead MSE
evaluated on a test set using structured and unstructured models, with increasing training prediction
horizon N.
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A.3 Eigenvalue Analysis and Physical Interpretability

Fig. [8]shows concatenated eigenvalues in the complex plane for weights of the state transition maps
fz and f of learned structured (2)) and unstructured recurrent neural dynamics models, respectively.
Besides structure Fig. [§|compares the effect of eigenvalue constraints using Perron-Frobenius (pf)
factorization of the system dynamics weights. Please note that we plot only eigenvalues of the
neural network’s weights. Hence the dynamic effects of the activation functions are omitted in this
analysis. However, all our neural network blocks are designed with GELU activation functions, which
represent contractive maps with strictly stable eigenvalues. Therefore, based on the argument of the
composition of stable functions, the global stability of the learned dynamics is not compromised.
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Figure 8: Eigenvalue plots of the weights of system dynamics maps f,, and f of learned structured
and unstructured dynamical models, respectively. Blue circles represent stable regions.

Fig. [8a] shows the effect of proposed eigenvalue constraints pf factorization, and verifies that the
dominant eigenvalue remains within prescribed bounds Ay, = 0.8 and A\j.x = 1.0. Hence the



disipativeness of the learned dynamics is hard constrained within physically realistic values when
using pf factorization. Another interesting observation is that there are only two dominant dynamical
modes with eigenvalues larger than 0.8, one per each layer of f,. While the rest of the eigenvalues
fall within 0.05 radius, hence representing less significant dynamic modes [40,41]. This indicates a
possibility to obtain lower-order representations of the underlying higher-order nonlinear system, a
property useful for real-time optimal control applications.

In contrast, as displayed in Fig.[8ajand Fig.|8c} the eigenvalues of standard unconstrained weights
for both structured and unstructured models are more dispersed with larger imaginary parts. The
imaginary parts indicate oscillatory modes of the autonomous state dynamics f, and f, respectively.
However, in the case of building thermal dynamics, the periodicity of the dynamics is caused by
external factors such as weather and occupancy schedules. From this perspective, the structured
models using pf factorization of the weights, are closer to the physically realistic parameterization of
the system dynamics. Additionally, not using eigenvalue constraints may result in learning unstable
weights. Fig. [Sc|displays an example where the unstructured learned model does not guarantee the
satisfaction of physically realistic dissipativeness property.
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