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Abstract

Achieving efficiency gains in Chinese district heating networks, thereby reducing
their carbon footprint, requires new optimal control methods going beyond current
industry tools. Focusing on the secondary network, we propose a data-driven deep
reinforcement learning (DRL) approach to address this task. We build a recurrent
neural network, trained on simulated data, to predict the indoor temperatures. This
model is then used to train two DRL agents, with or without expert guidance, for
the optimal control of the supply water temperature. Our tests in a multi-apartment
setting show that both agents can ensure a higher thermal comfort and at the same
time a smaller energy cost, compared to an optimized baseline strategy.

1 Introduction

Space heating and cooling in buildings is well-known for representing a significant part of global
CO; emissions. For instance, district heating alone in China consumes more energy than the entire
United Kingdom []1]. As of today, operating such industrial heating networks is prone to energy
losses due to complex nonlinear building thermal behaviours. Hence significant efficiency gains are
possible resulting in a clear line of work to fight climate change: develop and implement advanced
control strategies for an optimal operation. This is all the more relevant in China where 87% of heat
production is either from coal or oil [2].

In a typical Chinese district heating system, heat is produced in a central location and conveyed
towards substations and onwards for distribution to customers via a heat exchanger and a network
of insulated pipes. The distribution network is organized in a feed-and-return line and contains two
parts, the primary and secondary networks as shown in Figure 1. The secondary network contains
temperature sensors 7T, for the fluid exiting the substation towards the feed line, and 7. for the fluid
entering the heat exchanger back from the return line. As is the norm in China and unlike some
contributions on optimal district heating such as [315]], we assume that the network operator buys
heat at a constant price and from a unique third-party producer. We focus thus on the control of the
secondary indoor temperatures: heat must be delivered to each apartment on the feed line to ensure
that every indoor temperature is within an admissible range. In particular, any temperature above
the upper bound results in both a waste of energy and an economic loss for the utility - most often,
heating fees in China are a flat cost per square meter, regardless of the actual energy consumption.
However, it is not possible to individually control the thermal behaviour of every apartment. Instead,
an operator should control the indoor temperatures with two commands located inside the substation:
(i) the supply temperature T, by acting on a control valve on the primary side, and (ii) the flow rate
of the fluid, thanks to a pump at the inlet bound of the secondary side of the heat exchanger.

The state-of-the-art industrial control strategies rely on a relationship, called the water curve, which
is tuned by an expert, between T and the outdoor temperature 7. This paper investigates how to
improve this strategy to ensure both higher thermal comfort and smaller energy and operation cost.
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Figure 1: A district heating network.

2 Approach

2.1 Control strategy

We apply a Reinforcement Learning (RL) paradigm [6], where an agent learns a control strategy
(policy) by interacting with the environment - here, the set of rooms heated by the network. The
problem is modelled as a Markov Decision Process: the agent receives an observation of the state
of the environment, chooses an action and receives as a result a reward from the environment. The
best control strategy maximizes the expected cumulative discounted reward over the lifetime of the
agent. Learning such a policy requires first to derive a model of the environment, to predict the indoor
temperatures from the commands and the weather conditions. This model is described in Section 2.2.

At time ¢, the state is a vector s; containing the outdoor temperature T, ;, supply water temperature

T ¢, time of the day and indoor temperatures Ti(i)t for every room j € {1,..., N} in the network.
s¢ contains both present and past n measurements of these quantities. At an hourly time step, a
history of 24 hours is used to form s;. At that same hourly time step, the agent is asked to select an
action a;. The flow rate being kept constant, the action is restricted to the supply temperature T ;.
Two discrete action spaces, with T (°C) € {20, 21,...,50}, are considered. Agent 1 is the standard
strategy while Agent 2 is a finetuning of the baseline control strategy (cf Section[2.3):

1. Agent 1: to enforce the smoothness of the control signal, the action is limited to the
increments a; = Ts; — Ts +—1 where a; € A := {0, £0.5, £1, £1.5, ..., £3}.

2. Agent 2: the discrete action is the difference a; = T ; — T;t where a; € A and Tf is the
estimated baseline supply temperature.

Finally, the agent selects the action in order to maximize the expected cumulative discounted reward
function R = ZtT:o vtr(s¢, as) over T time steps in the heating season. In the sequel, the discount
factor is set to v = 0.9, which corresponds to an agent that adapts its behaviour to the expected
reward for the next 30 hours. The reward r penalizes deviations from a target temperature 7 :

N
r(an,se) ==Y T, - T, (1)
j=1

We use Deep Reinforcement Learning (DRL), to train the different agents. DRL has proven to
be a successful algorithm in various domains such as games, robotics or demand response [7]]. In
particular, we train Deep Q-Networks (DQN:s, [8,9]]). For each training episode, a weather file is
randomly chosen from a set of 7 cities in China to avoid overfitting the local climate, and an entire
heating season is simulated. The weather measurements for testing the agents come from an eighth
city, Yuncheng. Some statistics summarizing the climate in these cities are gathered in Appendix A.

2.2 Model identification

Consider a six-story building with three apartments per level - facing either the Eastern, Southern or
Western direction. Heat is provided from a district heating substation and supplied to the apartments



through a high-inertia radiant heating system. The detailed building dynamics are simulated from
an in-house model developed using Dymola, a commercial physics-based modelling and simulation
tool, and calibrated against real operation data to represent a variety of indoor temperatures found
in a district rather than in a single building. Seven apartments are thus left empty, to represent
thermal losses and eleven indoor temperatures are simulated at an hourly time-step from two sets of
inputs: the weather conditions (hour of the day, outdoor temperature 75, solar flux and angles) and
the commands (supply water temperature 7 and mass flow rate riz). Another output of the model
is the water return temperature 7,.. The model simulates a heating season from mid-December to
mid-March for a total of 83 days (2002 hours).

The detailed physical model is then used as a data generator process to train a statistical model
predicting the indoor and return temperatures. This model is a recurrent neural network (RNN, [[10])
with two layers of 32 Long-Short Term Memory units [[11]], a class of neural network able to catch
long-term dependencies in sequential data. Due to the high inertia of the system, the inputs are the
same as for the detailed model, except that a sequence of 120 time-steps (¢ — 119 to t) is used to make
predictions at time ¢. 1,373 series are generated, of which 80% are for training, 10% for validation
and 10% for testing. Each simulation has a random command and a weather file chosen from a
random location in China (see Appendix A). Implemented in Python with keras-tensorflow [12],
the model achieves a mean absolute test error of 0.110°C with a standard deviation of 0.132°C.

Switching from expert model to RNN reduces the prediction time - about 30 times faster on CPU -
which enables an efficient training of the agent. Although a challenge in practice, RNN networks can
also be fine-tuned to on-site measurements with transfer learning, ensuring thus a higher scalability.

2.3 Baseline model and metrics

The baseline model is a linear water curve T? = « + 3T, o, 3 being found by minimizing Y, —r4,
T4 as in @ with Particle Swarm Optimization [[13]]. The optimal linear water curve is an advanced
industry strategy, also called reactive control [5]. Besides, we implement and tune a PID controller, a
frequently used strategy for temperature control [[14]]. All computations are carried out in Python.

The different policies are compared in terms of (i) thermal comfort, i.e. deviation from target
temperature and stability of indoor temperatures, (ii) energy cost and (iii) estimated CO, cost. The
energy cost is computed from the temperature difference 75 — T, with T;. predicted by the RNN
model. The CO; cost is the amount of CO, emissions for one square meter of heated surface and per
heating season, under the standard industry assumption that it requires 80 kWh/m? of heat from a
coal-fired co-generation power plant, a wide-spread technology in China. Detailed computations are
presented in Appendix [A]

3 Results and Discussion

We consider first the control of a single apartment with constant target 7 = 18°C. It can be seen from
Figure 2 that Agent 1 uses the extra degree of freedom on 7 to maintain a more stable temperature,
closer to the target, hence a higher thermal comfort. Besides, the energy cost of Agent 1 is 2.73%
smaller than the baseline. Similar conclusions apply to Agent 2 (see Appendix A, Figure 4).

Next, Table 1 summarizes the metrics for controlling the 11 indoor temperatures at the same time,
with 7" = 18°C. The Agents achieve a better control of indoor temperatures, combined with energy
and CO; savings: controlling a heating network serving one million square meters (about 20,000
customers) with Agent 2 would save about 495 tons of CO, per season. Using the expert baseline
strategy to guide the actions of the agent is also beneficial, as illustrated by the improved performances
of Agent 2. This might help increasing the acceptability of reinforcement learning for the network
operator, since in this case the action is always at most 3°C different from the expert choice. Finally,
the PID controller performs slightly better than the baseline, but not as well as the Agents.

It can be noted that the environment contains little flexibility - a unique heat source at fixed price, no
storage units - whereas advanced controls are designed to unlock it [3L|15]. Hence, robust heuristics
like the optimal water curve are here difficult to improve further. Yet, flexibility can be achieved by
modifying the agent’s reward to allow more refined dynamic control targets, e.g. with a two-level
target temperature 7 = 17°C (night) and 7 = 18°C (day), Agent 1 achieves 6.6% energy savings.
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Figure 2: Agent 1 and Baseline performances for one apartment. (left) Control strategies T vs T,
and (right) trajectories of 7T},,. Constant target at 18°C. Best viewed in colors.

The good performances of the agents are in line with several other recently published papers applying
reinforcement learning to controlling an indoor temperature, with smaller energy gains due to the
lack of flexibility of the environment and an optimized baseline. Besides, our approach differs
from these contributions in some aspects. First of all, whereas most studies focus on the thermal
behaviour of a unique building, e.g. [1619]], our system is a whole substation, with the 11 apartments
originally tuned to represent the variety found in a district. District heating system are studied
in [3H520] with promising results in terms of control, but with no analysis of the effect of their
policies on indoor temperatures. Secondly, these references assume a simple rule-based strategy for
baseline, or a manual control [14]. For district heating however, using water curves for setting the
supply temperature is common practice, with parameters tuned by hand from a set of a dozen indoor
temperature sensors representative of the district thermal behaviour. By optimizing these parameters,
our baseline strategy is thus an improvement compared to the industry standards, in order to better
assess the potential gain due to reinforcement learning.

Another key feature of applying reinforcement learning to real-world problems is the design of the
reward function. Most references build the reward as an explicit trade-off between energy cost and
thermal comfort with careful weighting of the two contributions, see e.g. [14,/16H18]]. On the contrary,
our approach was to define a reward that depends solely on the target temperature specified by the
contract between utility and customers, and to evaluate whether the agents can lower the energy cost
as a side effect. Indeed, when adding an energy cost in this low flexibility environment, the Agents
maintain a mean indoor temperature constant at the lowest possible level; this effect can also be
achieved by the baseline by lowering the target temperature. Moreover, we find in our experiments
that the reward function (]D is more stable and robust to different weather conditions, while still
maintaining an advantage in terms of both energy cost and thermal comfort.

Nevertheless, our results suggest that deep reinforcement learning, by understanding the dynamics of
the system, is a suitable tool for controlling district heating networks, maintaining thermal comfort
while reducing energy cost. In order to be applied to an actual network, the first step is to deploy
onsite outdoor and indoor temperature sensors. Next, either the RNN model or a lightweight statistical
model (e.g. equivalent RC electrical networks) is finetuned on the operation data. Based e.g. on a
cloud infrastructure to store the measurements, the agents, whether they are DQN or more recent
agents such as DDPG |[21]], can finally be deployed for controlling the substation [20].

Table 1: Performances of the control strategies in the multi-apartment setting, for 7 = 18°C. MAE:
mean absolute error, std: standard deviation. Best performance is emphasized in bold.

MAE T;, std7T;, Energygain CO;saved

°0O) (°O) (%) (g/m?)
Baseline 0.599 0.755 0 0
PID 0.584 0.742 0.95 215
Agent 1 0.549 0.699 2.15 486
Agent 2 0.545 0.692 2.19 495
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Figure 3: Feasible operating regions for Combined Heat and Power Units. Source: [22].

A Supplementary material
A.1 Weather information

The weather files used in our numerical experiments come from eight cities in China. Yuncheng’s
climate is used only for testing the different control strategies, while measurements from the seven

other cities are used for training only. Table 2 summarizes their climate in terms of indoor temperature
and solar radiation.

Table 2: Measured weather conditions averaged over one heating season. 7, (°C): outdoor tempera-
ture, max ¢ (W.h/m?): daily maximum global horizontal solar flux. std: standard deviation.

Beijing Chengdu Harbin Shenyang Shijiazhuang Xian Yuncheng Zhengzhou

mean 7, 6.92 12.36 337 1.87 8.27 8.40 2.53 8. 81
(tdT,)  (7.58)  (@478)  (10.01)  (1.87) (7.20) 6.67)  (5.81) (6.69)
max ¢ 634 374 533 582 555 510 631 580

(std max ¢)  (186) 61) (167) (198) @11 (226)  (315) (230)

A.2 Metrics computation

The energy cost is computed as follows. With T (respectively 7)) denoting the secondary supply

(respectively return) water temperature, the heat transferred from the primary to the secondary side
through the heat exchanger is:

Q=m-cp (Ts —T),
where ri1 is the water flow rate in kg/s, ¢, = 4180 J/kg/K and @ is the heat duty (W).

To estimate the CO; cost, we assume that heat is produced by a coal-fired co-generation power
plant. Under this technology, we make the assumption, standard in industry, that the primary
heat consumption is 80 kWh/m?. If a control policy saves p% energy, this corresponds thus to
80 - pkWh/m? of saved primary heat. Using the feasible operating region of combined heat and
power plants shown in Figure [3] reducing the heat consumption by 80 - p increases the electricity

generation by 80 - p- A, where A = ’ 350-234 ‘ Finally, we assume than producing one more kilowatt-

hour of electricity without increasing the coal consumption saves 930 g of CO,. Hence the estimation
of total amount of saved CO, emissions:

350 — 234

930><‘ T

‘ x 80 x p (gCOz/m?)



A.3 Additional figures and DQN hyperparameters

The DQN has a learning rate set to 0.001, buffer size to 1000000, batch size to 32, 300 training
episodes (1883 time steps per episode, after initialization during 119 steps); the initial (respectively
final) value of random action probability is 1.0 (resp. 0.1), fraction of entire training period over
which the exploration rate is annealed is 0.8, the target network is updated every 200 steps. The

Q-network has two layers of 64 neurons each.

The results for one apartment controlled by Agent 2 are displayed in Figure 4.

Figure 4: Results for a single apartment, from Agent 2 and baseline strategy. (left) Control strategy
T vs T, and (right) performance in terms of T;,,, through the heating season. Best viewed in colors.

Additional figures are provided for the experiments with multiple apartments: Figure 5 shows the
reward of both agents during the 300 episodes of training and Figure 6 shows the optimal control
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