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Abstract

Climate change is expected to aggravate extreme precipitation events, directly
impacting the livelihood of millions. Without a global precipitation forecasting
system in place, many regions – especially those constrained in resources to collect
expensive groundstation data – are left behind. To mitigate such unequal reach
of climate change, a solution is to alleviate the reliance on numerical models
(and by extension groundstation data) by enabling machine-learning-based global
forecasts from satellite imagery. Though prior works exist in regional precipitation
nowcasting, there lacks work in global, medium-term precipitation forecasting.
Importantly, a common, accessible baseline for meaningful comparison is absent.
In this work, we present RainBench, a multi-modal benchmark dataset dedicated
to advancing global precipitation forecasting. We establish baseline tasks and
release PyRain, a data-handling pipeline to enable efficient processing of decades-
worth of data by any modeling framework. Whilst our work serves as a basis for
a new chapter on global precipitation forecast from satellite imagery, the greater
promise lies in the community joining forces to use our released datasets and tools
in developing machine learning approaches to tackle this important challenge.

1 Introduction

Extreme precipitation events, such as violent rain and hail storms, can devastate crop fields and
disrupt harvests [22, 12]. Although these events can be locally forecasted with sophisticated numerical
weather models that rely on extensive ground and satellite observations, such approaches require
access to compute and data resources that developing countries in need – particularly in South
America and West Africa – cannot afford [11, 5]. The lack of advance planning for precipitation
events impedes socioeconomic development and ultimately affects the livelihoods of millions around
the world. Given the increase in global precipitation and extreme precipitation events driven by
climate change [6], the need for accurate precipitation forecasts is ever more pressing.

To mitigate such unequal reach of climate change, a solution is to alleviate the reliance on numerical
models (and by extension ground-station data) by enabling machine-learning-based forecasts from
global satellite imagery. Several notable prior works exist in applying machine learning techniques to
precipitation forecasting. Early work by Xingjian et al. [24] proposed a convolutional recurrent neural
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network for precipitation nowcasting. Most recently, Sønderby et al. [21] from Google proposed a
“(weather)-model-free" approach, MetNet, which forecasts precipitation in continental USA using
geostationary satellite images and radar measurements as inputs. This approach performs well up to
7-8 hours, but inevitably runs into a forecast horizon limit as information from global or surrounding
geographic areas is not incorporated into the system. Such short time windows do not enable
substantial disaster preparedness for disadvantaged populations. Moreover, there lacks a common
and accessible dataset for meaningful comparison in global precipitation forecasting research.

Most related to our work, Rasp et al. [17] developed WeatherBench, a benchmark suite for global
data-driven medium-range weather forecasting. Although WeatherBench forms an excellent first
step in weather forecasting (focusing on temperature and geopotential), it falls short at enabling
precipitation forecasts. First, WeatherBench does not include any observational raw data (e.g. satellite
imagery) and only contains ERA5 precipitation data, which has limited skill in representing extreme
precipitation events. Further, WeatherBench does not include a fast dataloading pipeline to train ML
models, which has been found to be a significant bottleneck in our model development.

In this work, we present RainBench, a multi-modal benchmark dataset dedicated to advancing global
precipitation forecasting. We establish baseline end-to-end forecasting tasks covering realistic data
conditions. Together with the release of an efficient data-handling pipeline, PyRain, we are hopeful
that this work will facilitate future machine learning research in tackling the important challenge of
precipitation forecasting.

2 RainBench

We introduce RainBench a dataset to facilitate research efforts into global precipitation forecasting
from satellite imagery. RainBench results from the combination of the following sources of data.

SimSat. We integrate Simulated Satellite (SimSat) data to minimize data processing requirements
and to simplify the prediction task. SimSat data is model-simulated satellite data generated from Euro-
pean Centre for Medium-Range Weather Forecasts (ECWMF)’s high-resolution weather-forecasting
model using the RTTOV radiative transfer model [20]. Simsat emulates three spectral channels from
the Meteosat-10 SEVIRI satellite [1]. Simsat provides information about global cloud cover and
moisture features and has a native spatial resolution of about 0.1° – i.e. about 10 km – at three-hourly
intervals. The product is available from April 2016 to present (with a lag time of 24 h). Using real
satellite data adds unnecessary complication which deviates from the core precipitation forecasting
problem (e.g. the need to account for instrument error and missing values) and is left as future work.

IMERG. We use Integrated Multi-satellitE Retrievals (IMERG), a global half-hourly precipitation
estimation product provided by NASA [8]. Specifically we use the Final Run product which primarily
uses satellite data from multiple polar-orbiting and geo-stationary satellites. This estimate is then
corrected using data from reanalysis products (MERRA2, ERA5) and rain-gauge data. IMERG is
produced at a spatial resolution of 0.1° – about 10 km – and is available from June 2000 to present,
with a lag time of about three to four months.

ERA5. As an alternate source of precipitation estimates, we use the ERA5 Reanalysis Product [7]
which provides a global hourly estimate. Additionally, we include the broad spectrum of physical and
atmospheric variables provided in ERA5, such as specific humidity, temperature and geopotential
height at different pressure levels. Estimates cover the full globe at a spatial resolution of 0.25° and
are available from 1979 to present, with a lag time of five days.

Alongside RainBench, we release PyRain, an out-of-the-box experimentation framework to make
our released dataset as user-friendly as possible2. While being optimised for use with RainBench,
PyRain is also compatible with WeatherBench. PyRain is based on NumPy memmap arrays3 with
optimised software-side access patterns. Empirically we have found this to accelerate data-reading
operations by as much as 60× when compared to a conventional NetCDF+Dask 4 [18] dataloader.

2Dataloading limitations have been previously identified as a decisive bottleneck by the Pangeo community
in https://pangeo.io/index.html

3https://docs.python.org/3/library/mmap.html (2021)
4https://www.unidata.ucar.edu/software/netcdf/ (2021)
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Table 1: Precipitation forecasts evaluated with Latitude-weighted RMSE (mm). All rows except
the last show models trained with data from 2016 onwards. ERA* uses data from 1979 and 2000
onwards for predicting ERA5 and IMERG precipitation respectively. Best results (except ERA*) are
shown in bold.

ERA5 IMERG
1-day 3-day 5-day 1-day 3-day 5-day

Persistence 0.6249 0.6460 0.6492 1.1321 1.1497 1.1518
Climatology 0.4798 0.4802 0.4803 0.8244 0.8249 0.8246

SimSat 0.4610 0.4678 0.4691 0.8166 0.8201 0.8198
ERA 0.4562 0.4655 0.4677 0.8182 0.8224 0.8215
SimSat + ERA 0.4557 0.4655 0.4675 0.8134 0.8185 0.8185
ERA* 0.4485 0.4670 0.4699 0.8085 0.8194 0.8214

2.1 Benchmark Tasks

We define two benchmark tasks on RainBench for precipitation forecasting, with the groundtruth
precipitation values taken from either ERA5 or IMERG. For each benchmark task, we consider
three different input data settings: SimSat, reanalysis data (ERA5), or both. When using input data
from ERA5, we use 17 atmospheric state variables that we determine as useful for precipitation
reconstruction through correlation analysis and domain knowledge. Additionally, we use 5 static
variables describing the location and surface of the Earth. We normalize each variable with its global
mean and standard deviation.

We use Convolutional LSTMs [24] as the neural model baseline and structure our forecasting task
based on MetNet’s configurations [21], where a single model is capable of forecasting at different
lead times. Specifically, the network’s input is a time series of features from t = −T to t = 0, and
the output is a precipitation forecast at lead time t = τ . The input time series is a concatenation of
the aforementioned temporal features, static features, time features and a one-hot lead-time vector.
We provide more details in Appendix E.

The tasks are approached as a regression problem. Following [17], we use the mean latitude-weighted
Root-Mean Squared Error (RMSE) as loss and evaluation metric. This is a meaningful metric for
precipitation forecasts as it corrects the oversampling of locations at higher latitudes caused by
degree-based resolutions. We compare the results to two common baselines in weather forecasting
(1) a persistence forecast in which the precipitation at t = 0 is used as prediction at t = τ , and (2) a
climatology forecast in which the mean precipitation in the training data is used as prediction.

3 Benchmarks and Experiments

3.1 Precipitation Forecasting

Table 1 shows our neural model baseline for the two benchmark forecasting tasks. When predicting
ERA5 precipitation, all neural results outperform baselines. Training from SimSat alone gives the
worst results across all data settings; This confirms the difficulty in precipitation forecast from satellite
data alone, which does not contain as much information about the atmospheric state as sophisticated
reanalysis data such as ERA5. Importantly, the complementary benefits of utilizing data from both
sources is already visible despite our simple concatenation setup, as training from both SimSat and
ERA5 achieves the best results across all lead times (when holding the number of training instances
constant).

When predicting IMERG precipitation, the similar performance between the climatology baseline
and neural model suggests that this is a considerably more difficult task. Forecasting skill based
on ERA5 input is only mildly better than the climatology baselines for 1-day and 3-day forecasts.
Upon inspection we found IMERG to feature a longer tail distribution of extreme precipitation events
(Appendix B), which contributes to the increased difficulty of the task.
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Table 2: Same-timestep estimation of IMERG precipitation with and without balanced sampling,
reported in RMSE. Best results are shown in bold.

Slight Moderate Heavy Violent Micro Avg. Macro Avg.

ERA 0.20 4.08 16.2 63.1 0.65 20.9
Unbalanced SimSat 0.20 4.38 16.8 54.1 0.65 18.9

SimSat + ERA 0.20 4.03 16.5 53.0 0.65 18.4

ERA 1.05 2.75 12.4 58.0 1.40 18.6
Balanced SimSat 1.17 3.10 13.3 50.1 1.26 16.9

SimSat + ERA 1.30 3.15 11.8 44.3 1.38 15.1

We also see the importance in using a larger training dataset, since extending the considered training
instances to the full ERA5 dataset outperforms the baselines further in the 1-day forecasting regime
(shown in the last rows). A key limitation in the baseline setup is that only the overlapping time
frames (from 2016 onwards) of ERA5, IMERG and SimSat are used. This suggests that there is still
significant room for improvement above the presented baselines, especially by developing alternative
modeling setups that adequately make use of the full available data from each source.

3.2 Balanced Sampling Approach

To better understand the challenges posed by an imbalanced occurrence of precipitation events,
we carried out a separate analysis focusing on same-timestep precipitation estimation on IMERG.
We defined a balanced-sampling approach and measure its effect on model performance in four
precipitation classes (defined according to [15]).

For this analysis, we use LightGBM models [10]. We use 1 million randomly-sampled pixels
as training data, and compare the (not latitude-adjusted) RMSE for two pixel sampling variants.
A) unbalanced sampling, meaning grid points are chosen randomly from the raw data distribution
and B) balanced sampling, in which we bin IMERG precipitation into four classes and sample grid
points until there is an equal amount of pixels per bin.

In Table 2, we find that balanced sampling reduces the per-class validation RMSE of moderate, heavy
and violent precipitation, resulting in improved macro-averaged RMSE. However, the micro-averaged
RMSE increases due to worsen performance on the ‘Slight Rain’ class, which dominates the dataset.

4 Discussion

Designing an appropriate class-balanced sampling may play a crucial role towards improving predic-
tions of extreme precipitation events, a potential solution may lie in a mixture of pixelwise-weighting
and balanced sampling strategies. A closely related issue is data normalization, where a more sophis-
ticated feature scaling approach should be developed to account for any local weather patterns and
spatial differences, such as the Local Area-wise Standardization (LAS) approach proposed in [4].
We suggest refining LAS and adjust the kernel size with latitude, such that the spatial normalization
context remains constant over the globe.

Further, the spherical input and output data topology of global forecasting contexts poses interesting
questions regarding the choice of neural network architectures. While a multitude of approaches to
handle spherical input topologies has been suggested (see [13] for an overview), it seems yet unclear
which approach works best. Our dataset might constitute a valuable benchmark for such research.

Beyond improving upon the proposed benchmark forecasting tasks, RainBench also enables other
exciting research avenues. The availability of a comprehensive list of atmospheric state variables in
RainBench makes feasible a physics-informed learning approach, for instance by taking a multi-task
learning approach to forecast precipitation while simulating physical state variables. Apart from
this, developing approaches which allow for effective use of high-resolution data might provide
performance gains due to the increased amount of information captured, for example by taking a
multi-fidelity approach [9] or by incorporating a local high-resolution model [3]. Investigating a
multi-time-step loss function to train the forecast model is another possible approach to improving
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generalization performance [14, 2, 23]. Lastly, a local encoder network may be build to provide
low-dimensional embeddings, which could then be fed into a late fusion network architecture
similar to Rudner et al. [19, Multi3Net]; this might reduce the time lag in obtaining an Early-Run
IMERG product, which is currently constrained by the resource-heavy transfer of high-dimensional
observational data.
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A PyRain

PyRain introduces an efficient dataloading pipeline for complex sample access patterns that scales
to the terabytes of spatial timeseries data typically encountered in the climate and weather domain.
Previously identified as a decisive bottleneck by the Pangeo community5, PyRain overcomes ex-
isting dataloading performance limitations through an efficient use of NumPy memmap arrays6 in
conjunction with optimised software-side access patterns.

In contrast to storage formats requiring read system calls, including HDF57, Zarr8 or xarray9,
memory-mapped files use the mmap system call to map physical disk space directly to virtual process
memory, enabling the use of lazy OS demand paging and circumventing the kernel buffer. While
less beneficial for chunked or sequential reads and spatial slicing, memmaps can efficiently handle
the fragmented random access inherent to the randomized sliding-window access patterns along the
primary axis as required in model training.

In Table 3, we compare PyRain’s memmap data reading capcity against a NetCDF+Dask 10 [18]
dataloader. We find empirically that PyRain’s memmap dataloader offers significant speedups over
other solutions, saturating even SSD I/O with few process workers when used with PyTorch’s [16]
inbuilt dataloader.

Table 3: Number of data samples loaded per second using PyRain versus a conventional NetCDF
framework. Typical configurations assumed and performed on a NVIDIA DGX1 server with 64
CPUs.

NetCDF PyRain Speedup

16 workers 40 2410 60.3×
64 workers 70 1930 27.6×

B Precipitation Events in ERA5 and IMERG

RainBench provides precipitation values in two forms: ERA5 precipitation and IMERG precipitation.
The ERA5 precipitation is accumulated precipitation over the last hour – in m – and is calculated as an
averaged quantity over a grid-box. IMERG precipitation has been aggregated into hourly accumulated
precipitation – in mm – and should be considered as a point estimate of the precipitation.

Figure 1 shows the distribution of precipitation for the years 2000-2017 with both ERA5 and IMERG.
Their different distributions indicate that the quality of global precipitation estimates, in particular
related to extreme precipitation events, varies with the choice of precipitation data. IMERG has
significantly larger rainfall tails than ERA5, and these tails rapidly vanish with decreasing dataset
resolution. The underestimation of extreme precipitation events in ERA5 is clearly visible.

Figure 2 shows the pixel-wise precipitation class histograms derived from IMERG at native resolution
(0.1°) with max-pooling as downscaling to preserve pixel-wise extremes.

C Data Preprocessing for Benchmark Tasks

To facilitate efficient experimentation, we convert all data from their original resolutions to lower
resolutions using bilinear interpolation. Throughout this paper, we consider data at 5.625°.

The chosen input features for benchmark tasks are as follows. From the ERA5 dataset, we select a
subset of variables as input to the forecast model based on our data analysis results; the inputs are
geopotential (z), temperature (t), humidity (q), cloud liquid water content (clwc), cloud ice water

5https://pangeo.io/index.html (2021)
6https://docs.python.org/3/library/mmap.html (2021)
7https://portal.hdfgroup.org/display/HDF5/HDF5(2021)
8https://zarr.readthedocs.io/en/stable/ (2021)
9http://xarray.pydata.org/en/stable/ (2021)

10https://www.unidata.ucar.edu/software/netcdf/ (2021)
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Figure 1: Precipitation histogram for the years 2000-2017 with both ERA5 and IMERG at different
resolutions. Vertical lines delineate convection rainfall types: slight (0 mm h−1 to 2 mm h−1), mod-
erate (2 mm h−1 to 10 mm h−1), heavy (10 mm h−1 to 50 mm h−1), and violent (over 50 mm h−1)
[15].
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Figure 2: Global distribution of rain events (% of total events).

content (ciwc), each sampled at 300 hPa, 500 hPa and 850 hPa geopotential heights; to these we
add the surface pressure and the 2-meter temperature (t2m), as well as static variables that describe
the location and surface of the Earth, i.e. latitude, longitude, land-sea mask, orography and soil
type. From the SimSat dataset, the inputs are cloud-brightness temperature (clbt) taken at three
wavelengths. We normalize each variable with its global mean and standard deviation.

Since the data from each source are available at different times, we use the subset of data available
from April 2016 train all models for the benchmark tasks, unless specified otherwise. We use data
from 2018 and 2019 as validation and test sets respectively. To make sure no overlap exists between
training and evaluation data, the first evaluated date is 6 January 2019 while the last training date is
31 December 2017.

D Correlation Analysis

In Figure 3, we analyse the dependencies between all RainBench variables, we calculate pairwise
Spearman’s rank correlation indices over latitude band from −60 to 60° and date range from April
2016 to December 2019. In contrast to Pearson’s correlation coefficient, Spearman’s correlation
coefficient is significant if there is a, potentially non-linear, monotonic relationship between variables,
while Pearson’s considers only linear correlations. This allows to capture relationships between
variables such as between temperature and absolute latitude. Comparing correlations at altitude
pressure levels 300 hPa (about 10 km) and 850 hPa (1.5 km), we can see that they are almost
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spatial resolution of 5.625° in latitude band [−60◦, 60◦] at pressure levels 300 hPa (about 10 km)
(upper triangle) and 850 hPa (1.5 km) (lower triangle). Legend: lon: longitude, lat: latitude, lsm:
land-sea mask, oro: orography (topographic relief of mountains), lst: soil type, z: geopotential
height, t: temperature, q: specific humidity, sp: surface pressure, clwc: cloud liquid water content,
ciwc: cloud ice water content, t2m: temperature at 2m, clbt:i: ith SimSat channel, tp: ERA5 total
precipitation, imerg: IMERG precipitation. All correlations in this plot are statistically significant
(p < 0.05).

identical, save for a few exceptions: Specific humidity, q, and geopotential height, z, correlate
strongly at 300 hPa but not at 850 hPa, cloud ice water content, ciwc, generally correlates more
strongly at higher altitude (and cloud liquid water content, clwc, vice versa). A careful examination
of the underlying physical dependencies results in the realisation that all of these asymmetries stem
mostly from latitudinal correlations or effects related to cloud formation, e.g. ice and liquid form in
clouds at different temperatures/altitudes.

As we are particularly interested in variables that have predictive skill on precipitation, we note that
all SimSat spectral channels moderately anti-correlate with both ERA5 and IMERG precipitation
estimates. Interestingly, SimSat signals correlate much stronger with specific humidity and cloud
ice water content at higher altitude, which might be a consequence of spectral penetration depth.
ERA5 state variables that correlate most with either precipitation estimates are specific humidity and
temperature. Cloud ice water content correlates moderately strongly with precipitation estimates
at high altitude, but not at all at lower altitude (where ice water content tends to be much lower).
Interestingly, a number of time-varying ERA5 state variables correlate more strongly with IMERG
precipitation than ERA5 precipitation, as do SimSat signals. Conversely, a number of constant
variables, such as land-sea mask, orography and soil type are significantly anti-correlated with
ERA5 precipitation, but not at all correlated with IMERG. Overall, we find that all variables that
are significantly correlated or anti-correlated with both ERA5 tp and IMERG are also correlated or
anti-correlated with SimSat clbt:0-2, suggesting that precipitation prediction from simulated satellite
data alone may be feasible.

E Model Implementation

We use Convolutional LSTMs [24] and structure our forecasting task based on MetNet’s configura-
tions [21]. An overview of our setup is shown in Figure 4.

The network’s input is composed of a time series {xt}, where each xt is the set of standardized
features at time t, sampled in regular intervals ∆t from t = −T to t = 0; the output is a precipitation
forecast y at lead time t = τ ≤ τL. In addition to the aforementioned atmospheric features, static
features (e.g. latitude) along with three time-dependant features (hour, day, month) are repeated
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per timestep. The input vector is then concatenated with a lead-time one-hot vector xτ . In our
experiments, we adopt T = 12 h, ∆t = 3 h and forecasts at 24-hour intervals up to τL = 120 h. We
note that we do not include precipitation as an input temporal feature.

Figure 4: Modelling setup for the benchmark forecasting tasks.

F Forecast Visualization

Figure 5 shows example forecasts from one random input sequence across the different data settings
for predicting ERA5 precipitation. We observe that the forecasts can capture the general precipitation
distribution across the globe, but there is various degrees of blurriness in the outputs. As we shall
discuss later in the paper, considering probabilistic forecasts would be a promising solution to
blurriness, which might have arisen as the mean predicted outcome.

Simsat

ERA

Simsat  
& ERA

1-day 2-day 3-day 4-day 5-day

Truth

Figure 5: ERA5 Precipitation forecasts on one random sample.
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