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Abstract

The effects of climate change on river levels are noticeable through a higher oc-
currence of floods with disastrous social and economic impacts. As such, river
level forecasting is essential in flood mitigation, infrastructure management and
secure shipping. Historical records of river levels and influencing factors such as
rainfall or soil conditions are used for predicting future river levels. The current
state-of-the-art time-series prediction model is the LSTM network, a recurrent
neural network. In this work we study the efficiency of convolutional models,
and specifically the WaveNet model in forecasting one-day ahead river levels. We
show that the additional benefit of the WaveNet model is the computational ease
with which other input features can be included in the predictions of river stage
and river flow. The conditional WaveNet models outperformed conditional LSTM
models for river level prediction by capturing short-term, non-linear dependencies
between input data. Furthermore, the Wavenet model offers a faster computation
time, stable results and more possibilities for fine-tuning.

Introduction

Due to climate change, there is an increasing occurrence of floods and droughts affecting river lev-
els which poses a danger to human life, infrastructure and results in significant economic and social
losses. Accordingly, accurate river level forecasts are needed for early warning systems of floods
and flood mitigation, as well as the management of environment, infrastructure and shipping [11, 2].
River levels like the stage, the water height, and the flow rate are frequently measured along the river
and can be estimated in forecasts. However, it is difficult to produce accurate river level forecasts
because river levels are the result of complex, dynamic processes of the hydrological cycle. They
are affected by many factors that determine water runoff into rivers such as topography, soil char-
acteristics, land usage or snowmelt. Therefore river levels display large variations over time with a
strong noise component, seasonality and a high degree of non-linearity. These characteristics pose
challenges and uncertainty in parameter estimates to forecasting models [17].

Classical approaches for river level forecasting make use of historical time-series or river level re-
lated variables. Physically-based methods are hydrodynamic models. They attempt to model the
mathematical process underlying the hydrological cycle using physical laws [15]. Hydrodynamic
models require large amounts of input data, that can be difficult to obtain (i.e. topography or river
geometry), need a long time to run and are prone to errors [19, 6]. A classical data-driven alternative
are the auto-regressive (AR) models [10, 4]. However, they fail to capture the non-linear dynamics
in river levels and are therefore outperformed by neural networks in river level forecasting [13].
Feedforward fully-connected neural networks can only access a small number of past time points for
their predictions. They have been shown to struggle with generalisability on the test set and under-
prediction of values, because of the low occurrence of extreme events [1, 10, 7]. These models are
also not able to encode temporal or sequential patterns of a time-series. The current gold-standard
for time-series predictions is the LSTM, a recurrent neural network, which is specialised for this

Tackling Climate Change with Machine Learning workshop at NeurIPS 2020.



task; LSTM models have produced impressive results for river level forecasting, outperforming
other models in forecasting one day ahead flow rates based on historical time-series of flow and
catchment rainfall [11].

One of the challenges of RNNs and LSTMs is their training process which suffers from vanishing
gradients and hampers learning long-time dependencies. Additionally they are not built to separately
process conditional inputs. As an alternative to RNNs in time-series forecasting, convolutional neu-
ral networks (CNNs) have been proposed. While CNNs are known for their application to image
classification, they can be applied to sequence learning as well [9, 5]. CNNs can make use of par-
allelisation and weight sharing among filters, resulting in enhanced computational efficiency, easier
training and their ability to process long sequences. A specific CNN called WaveNet was developed
for audio generation purposes [14]. The Wavenet model’s architecture (see Figure 1) can access
a broad history of data through dilated causal convolutions. It is able to identify short-term and
long-term dependencies through its specialised residual block architecture and parameterised skip
connections. Importantly, the Wavenet allows to handle additional inputs to condition its output.
Because of the Wavenet’s demonstrated ability to learn dependencies in the data at different scales
in audio signals, it suggested itself to be useful in various applications in time-series forecasting
problems [16, 3, 18, 20].

In this work, we assess the applicability and performance of a WaveNet-like network for single-step
river level time-series forecasting by benchmarking it against the LSTM network and conclude that
WaveNet models can be the new state-of-the-art in river level forecasts.

Methods

The Wavenet model is a CNN with dilated causal convolutions and parameterised skip connections
as well as a specialised residual block architecture inspired by the LSTM cell.

Figure 1 shows that the dilated causal convolutions enable the network to access a broad history of
the data, referred to as a large receptive field. Outputs from all layers are sent to the last layer via
skip connections to allow deeper networks to converge. Each neuron of the hidden layers in Figure
1 (L) represents one residual block. The residual block architecture, showin in 2 (R) is inspired
by the LSTM cell, which includes a hyperbolic tangent (tanh) gate and a sigmoid (o) filter. The
purpose of the residual connection within the block is to aid in the convergence of deep networks.
The final output of the network is obtained by adding up all skip connections and then passing this
output through a convolutional layer with a ReLU activation function and a convolutional layer with
a softmax activation function. The Wavenet model output is the prediction of a single time-series.
The value of the WaveNet model lies in the ability to condition this prediction on other supporting
time-series by processing these with additional convolutional layers and adding them to the input of
the first layer of residual blocks.
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Figure 1: WaveNet architecture: (L) The causal dilated convolutions allow an output time step to receive
information from a broader receptive field (green) with an increasing number of hidden layers. (R) Primary and
conditional input is processed in the residual units and sent to output via skip connections. .



Data and Models

The models were trained for the station North Muskham on the river Trent. The stage data
was obtained from the website River Levels UK (https://riverlevels.uk/rivers/rivertrent), and the
river flow and daily catchment rainfall data were obtained from National River Flow Archive
(https://nrfa.ceh.ac.uk/data/). The data included in this study (2012-2017) had no missing values.
As a pre-processing step, all data types were min-max normalised. The conditional models predict
daily river stage or daily river flow using rainfall and river flow or river stage, respectively. The
hyper-parameter optimisation of models involved a variation of the number of layers and either the
number of filters per layer (WaveNet) or the number of units per hidden layer (LSTM).

Performance Evaluation

The RMSE was used as the loss function capturing the absolute error, while model performance
was evaluated with the E-value and the U2-value. The E-value measures the goodness-of-fit and
is computed like the well-known R? value used with statistical projections [12]. Theil’s U2 value
stems from econometrics and assesses the models’ performance against a naive prediction. The U2

value is defined by,
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where y; is the model input value at time ¢, as well as the naive prediction at time point ¢ + 1, y;41
is the target value and ;1 is the model prediction at time point ¢ + 1.

Results and Discussion

Table 1 and Figure 2 show the results of the WaveNet and the LSTM model.
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Figure 2: Predictions from WaveNet and LSTM models- unconditioned or conditioned with rainfall
and river levels across two different periods of 30 days containing multiple peaks.

The unconditional models’ predictions heavily relied on the target value of the previous time point,
particularly when river levels rise. This is reflected by the models’ high U2 values close to 1 (the
value of a naive prediction), shown in table 1. The conditional models, however, generated realistic
one-step-ahead predictions. The conditional models were able to anticipate peaks in the river levels



Table 1: Results best-performing Models
| Model | Cond. Input | U2 mean | U2Std | EMean | E Std | RMSE Mean | RMSE Std |

River Variable Stage
WaveNet - 0.921 0.004 0.936 | 7e-04 0.152 8e-04
LSTM - 0.888 0.027 0.932 | 0.005 0.173 0.007
WaveNet | Rain, Flow 0.525 0.001 0.967 le-04 0.035 le-04
LSTM Rain, Flow 0.596 0.022 0.962 | 0.003 0.038 0.002
River Variable Flow
WaveNet - 0.918 0.002 0.930 0 19.727 0.002
LSTM - 1.084 0.225 0.928 0.007 20.285 0.995
WaveNet | Rain, Stage 0.524 0.006 0.967 | 0.001 8.176 0.147
LSTM Rain, Stage 0.693 0.052 0.960 | 0.004 9.007 0.407

as is also reflected in lower U2 values. The WaveNet models significantly outperformed the LSTM
models for the prediction of the stage and the flow in terms of U2-value, E-value and RMSE (Table
1). Figure 2 shows that the peaks in the primary variables often follow peaks in the rainfall data.
The conditional models were able to anticipate peaks, using the information from this conditional
input. The higher performance of the WaveNet models suggests that they were better able to extract
the dependencies between the inputs than the LSTM. The WaveNet architecture offered possibilities
to adjust the filter size at each of the convolutional gates in the residual units to extract informa-
tion from the inputs optimally (see Figure 1). Such adjustments were not possible with the standard
LSTM model. In some instances, the conditional models failed to predict peaks; in many of these in-
stances, no peaks in the conditional input could be observed, suggesting that the model did not have
access to sufficient information for predicting the peaks. This could likely be addressed by provid-
ing the model with additional (time-series) data of other conditioning factors. The hyper-parameter
optimisation showed that the best models only required a small input window; for the WaveNet
models, the receptive field was 8 days, while the training window of the LSTM was 28 days. This
indicates that the critical information for the one-day ahead river level prediction lies in the recent
past. The WaveNet likely did not benefit from its known ability to extract long-term dependencies
when using a large receptive field, because the long-term dependencies were not sufficiently infor-
mative or representative (because of weight stationarity) to outweigh the introduction of noise by
a larger receptive field. Further, table 1 shows that the WaveNet models’ performance metrics had
low standard deviations in comparison to those of the LSTM models. The WaveNet model produced
such reliable and robust results, as it is able to process the whole sequence in one sample thanks
to parallelisation and parameter sharing. The LSTM must process the input in smaller batches due
to its vanishing gradients problem. Batching leads to inconsistencies in the output between sepa-
rately trained models, because each batch has its own optimal solution of weights and the gradient
update is a stochastic process [8]. These differences in architecture resulted in lower training times
for the WaveNet models than for the LSTM models, showcasing the benefits of WaveNet models in
practice, when fast and accurate river flow or stage predictions are needed.

Conclusion and Future outlook

We showed that the WaveNet architecture is a strong alternative to the LSTM for river level fore-
casting, as it achieves a lower prediction error by extracting short-term relationships between input
data. The additional benefits of WaveNet include its reliability, possibilities for fine-tuning, and
computational efficiency. The models’ performance can likely be improved even further by adding
suitable conditional inputs such as variables of the hydrological cycle or other influencing factors.

The model’s reliable one-day head forecasts will allow densely populated areas located next to
and downstream of major rivers to take emergency measures in the case of flooding. Furthermore,
these short-term predictions are needed for controlling inland shipping and managing water supply.
An advantage of the models is that they only require a small number of commonly available inputs.
They can be trained and tested on the data of each location with the relevant and available conditional
time-series. For usage of the WaveNet model in modern river level forecasting, the model should be
validated on other stations and it can be tested for prediction of broader forecast horizons, which are
needed for other areas of application, including various types of planning such as city planning or
long-term flood mitigation.
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