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ABSTRACT

To address the mounting destruction caused by floods in climate-vulnerable re-
gions, we propose Street to Cloud, a machine learning pipeline for incorporat-
ing crowdsourced ground truth data into the segmentation of satellite imagery of
floods. We propose this approach as a solution to the labor-intensive task of gen-
erating high-quality, hand-labeled training data, and demonstrate successes and
failures of different plausible crowdsourcing approaches in our model. Street to
Cloud leverages community reporting and machine learning to generate novel,
near-real time insights into the extent of floods to be used for emergency response.

1 INTRODUCTION

The frequency and magnitude of flooding are increasing at an alarming rate (UNDRR, 2015), affect-
ing growing populations of climate-vulnerable people. Flooding affects more people than any other
environmental hazard and hinders sustainable development (Hallegatte et al., 2017; CRED, 2019),
and research consistently shows that relative property loss for floods are highest in places of social
vulnerability (Tellman et al., 2020).

Nowcasting flood extents enables decision makers, relief agencies, and citizens to make informed
decisions and provide direct relief where it is needed most. Optical, radar, and microwave satellites
make it possible to remotely create scalable, low-cost, and high-quality flood maps and impact
assessments. However, there are significant challenges to flood mapping, monitoring, and analyzing
based on satellite data. Unique challenges arise from infrequent revisit times, varying resolutions
across satellites, adverse and obscuring weather conditions, and difficult to parse images of urban
areas where most of the world’s population and assets are concentrated.

Most existing algorithms to process these images, machine learning or otherwise, use finely an-
notated data that often requires remote sensing expertise to generate. Traditional, threshold-based
remote sensing often requires a nontrivial amount of manual quality assurance and parameter tuning
from domain experts.

In an effort to develop an algorithm that not only addresses these data issues but also directly engages
the communities affected in disaster reporting, we propose a methodology for using crowd-sourced
data and simplified flood masks to train a semantic segmentation model to generate high quality
flood masks. Using Cloud to Street’s Sen1Floods11 dataset (Bonafilia et al., 2020) of high-quality
hand-labeled Sentinel-2 imagery, we created a dataset of simplified flood masks and synthetic crowd-
sourced data points. These masks are intended to be simple to generate even without remote sensing
expertise, and therefore can be generated easily and at scale. Our synthetic crowdsourced data mir-
rors two plausible scenarios for aggregating data from the community: passive social media scraping
and active data collection by community members or trained data collectors. Leveraging dense and
sparse data at the same time is a challenge for segmentation networks that we tackle by adopting a
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two-stage process (see Figure 1) in which the second stage is inspired by continual learning. Af-
ter training our network using these two approaches, we benchmark our results against the models
trained on purely hand-labeled and purely simplified training masks.

We expect this research to allow us to provide high quality, rapidly available flood maps for evacu-
ation and aid. In the case of some urban areas, crowdsourcing will enable us to verify flooding on
a street-by-street level where remote sensing data alone cannot. Flood waters recede quickly, some-
times before there is a satellite overpass or the clouds clear, rendering optical remote sensing data
insufficient for flood detection. Similarly, radar data, which can map water through clouds, is often
very noisy in urban areas as signals can bounce off buildings. With street-level crowdsourcing and
machine learning, we can train models to do necessary initial inundation detection and compensate
for challenges when only using satellite data.

Figure 1: The inference pipeline of our model. The two-stage model first generates a segmentation
mask from Sentinel-2 imagery in Stage 1, and then combines Sentinel-2 imagery, initial coarse
output, and crowdsourced points in Stage 2 to generate the final segmentation mask. Points collected
from either a Trained Collector or Social Media model can be used interchangeably in this model.

In this work we provide a dataset of simplified water masks of flood events, built off of
Sen1Floods11, as well as a dataset of synthetic crowdsourced data for each event in a number of
plausible collection scenarios. We present Street to Cloud, a multi-modal model framework which
combines satellite imagery and in-situ, crowdsourced data in a segmentation and refiner network to
produce nowcast flood extent maps for monitoring, aid, and disaster relief.

2 RELATED WORK

Prior research using the Sen1Floods11 dataset has demonstrated gains in using Fully Convolutional
Neural Networks (FCNNs) to segment Sentinel-2 imagery of floods over threshold-based meth-
ods (Bonafilia et al., 2020). Of all the training strategies discussed, the most successful approach
required training the network on hand-labeled images of flood events which we use in our work.
Other approaches, such as DeepWaterMap (Isikdogan et al., 2020), generate water segmentation
maps of Landsat-7 imagery with global surface water labels.

Multi-modal approaches to semantic segmentation of remotely sensed imagery build off of signifi-
cant prior work geolocalizing data and incorporating crowdsourcing into disaster tracking. Efforts to
geolocalize street-view imagery have shown promising results using feature matching between aerial
and ground data (Regmi & Shah, 2019). The methods described can be used to identify a photog-
rapher’s angle and location when parsing crowdsourced images. Other work has delved further into
flood classification from social media imagery as well as separately in satellite imagery (MediaE-
val, 2018), providing promising baselines for inferring ground truth data from social media images.
There are examples of incorporating crowdsourcing into flood monitoring, including to assess flood
depth (Hultquist & Cervone, 2020) and for interactive flood modeling (Gebremedhin et al., 2020).

Exploration into iterative segmentation using human-in-the-loop annotation (Xu et al., 2016;
Lenczner et al., 2020) suggests potential gains to be made using ground-truth verified data in ad-
dition to initial segmentation masks.
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3 METHODS

We generated two new datasets to train our model: coarse water masks of flood events and corre-
sponding synthetic crowdsourced data points. To generate the coarse water masks, we used hand
labeled Sentinel-2 imagery from the Sen1Floods11 dataset and simplified the water masks using a
Gaussian blur with a large kernel. To generate the synthetic crowdsourced data, we sought to emulate
two plausible approaches to data collection. The first is to emulate social media scraping, in which
we anticipate a significant number of data points coming from the same region in an event (e.g. a
populated street, community center). These points have low dispersion. We anticipate these data
could come from Tweets, geotagged photos, and other online data sources. The second is to emulate
more spread out crowdsourced data that could be obtained by contractors walking the perimeter of
an event and providing data points at regular intervals. These points have high dispersion.

The total number of points per image is between 20 and 50, which makes up roughly 0.02% of
the total points in the image. We sample these points from the edge of the water annotation in
Sen1Floods11, either in clusters or with a higher dispersion factor to emulate these two scenarios.
In addition, we incorporate varied amounts of noise into the data to emulate geolocalization and user
errors (e.g. distance from a reported flood event boundary). The range of simulated noise from a
GPS sensor is 0 to 50 and 0 to 100 meters for low and high noise scenarios, respectively. The points
are aligned with the other data modalities by projecting the generated points onto a blank image.

We introduce a two-stage segmentation network to utilize both multispectral Sentinel-2 imagery and
crowdsourced points which we call the Refiner Network. The first stage of the network is tasked
with generating a course water mask as shown in Figure 1. The second stage refines on the coarse
prediction by receiving crowdsourced points, the coarse mask, and multispectral imagery to generate
a fine-grained output. We compare our Refiner Network to a standard UNet model (Ronneberger
et al., 2015).

4 RESULTS

We assess model performance with pixel accuracy and mean intersection over union (mIoU). We
benchmark against training our segmentation network on coarse labels, on finely annotated labels,
and then on coarse labels with varying permutations of synthetic crowdsourced data points and noise.

Our two-stage Refiner segmentation network outperforms the standard UNet architecture for both
metrics on coarse and fine annotation levels as shown in Table 1. The difference between these
models is greater when trained on the coarse data than when trained on the fine data, suggesting
that the refiner model is able to take advantage of more precise annotations. The refiner model,
when trained with a small number of synthetic points added to the coarse annotations, nears the
performance of the UNet model trained on fine annotations.

Model Training Labels Acc mIoU
UNet Coarse 95.2 53.8
Refiner Coarse 95.6 56.5
Refiner Coarse+Points 97.2 61.8
UNet Fine 97.0 62.4
Refiner Fine 98.1 64.9

Table 1: Comparison of model performance across training data annotation granularity and inclusion
of crowdsourced points. Coarse training labels are created using Gaussian blur of hand labeled
data, fine training labels are reference hand labeled data, and crowdsourced points are synthetically
generated. We represent the best performing crowdsourcing scenario, as discussed further in Table 2.

In Figure 2, we show the qualitative improvement of utilizing crowdsourced points. The addition
of crowdsourced points during training improves the model’s ability to localize small water areas
such as streams or flooded pools. In the bottom of Figure 2, notice the Refiner model with points
generated the most complete river compared to the other models. The low cost and minimal addi-
tional data from crowdsourced points greatly improves the performance of the network, and nears
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the upper bound performance of the UNet model trained on more expensive and time consuming
annotations.

We then analyze what form of crowdsourced points improve segmentation performance. In Table 2,
we compare crowdsourced points generated from a ’social media’ (SM) and ’trained data collector’
(TDC) model, or low and high dispersion points respectively, along the fine annotation border. In
Table 2, highly dispersed points result in higher model performance compared to the less dispersed
points. In any situation the addition of crowdsourced points improves the performance of the refiner
model over the baseline trained purely on coarse labels. Highly dispersed points with minimal noise
produce the greatest improvement over the coarse, no point baseline. The importance of sensor
noise affects each model differently. More severe sensor noise added to the TDC model decreases
performance while more noise improves SM models. The additional noise may increase the diversity
the low dispersion points, making them appear more like the TDC model.

Dispersion Noise Acc mIoU
No Points No Points 95.6 56.5
Low Low 95.9 59.6
Low High 96.9 61.0
High Low 97.2 61.8
High High 97.0 60.9

Table 2: Comparison of accuracy and mIoU across crowdsourcing dispersion and noise levels. Low
dispersion corresponds to a social media scraping approach, whereas high dispersion corresponds to
a trained data collector approach.

Figure 2: Qualitative results of the UNet, Refiner, and Refiner+Points models trained on coarse
annotations. The Refiner+Points model appears to reduce false positives that other models generate.

5 DISCUSSION AND CONCLUSION

Given the challenges with generating high quality labels for remote sensing data and the asset of
community partners willing to participate in crowdsourcing, we sought to build an algorithm that
utilized both modalities of observation to generate better flood segmentation masks for disaster
resilience. We developed a multi-modal segmentation network trained on simple, easy to generate
training data and synthetic crowdsourced data points. While we found that all types of crowdsourced
data points improved a single-input segmentation model, the best results used data points dispersed
across the perimeter of the event.

In practice, community members or government employees could provide data points along the
perimeter of flood events with which we could train models to nowcast flood extents. Social media
scraping, simple WhatsApp bots, and crowdsourcing-specific mobile applications could also be used
to collect data and improve segmentation models. Further feasibility studies of these crowdsourcing
approaches are required, including analyses of the availability of the necessary data and the temporal
frequency of its availability.
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Future work should include a sensitivity analysis of the impact of crowdsourced points on the ac-
curacy of Street to Cloud’s predictions to determine how many points are necessary to outperform
existing baselines for both crowdsourcing strategies. Additional studies of obtaining and parsing real
crowdsourced data to determine the feasibility of both approaches is also required. Our success with
a small volume of crowdsourced data suggests that coarse training labels could be generated using
unsupervised or weakly supervised learning, which is another avenue to explore when determining
how to deploy this algorithm in practice.

Street to Cloud is a prototype for a multi-modal segmentation network that uses crowdsourcing to
mitigate the need for finely annotated training data. With further field testing across a variety of
urban and rural domains and incorporating real crowdsourced data, we anticipate this model can be
used widely to nowcast flood extents, monitor impacts, and inform disaster relief.
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