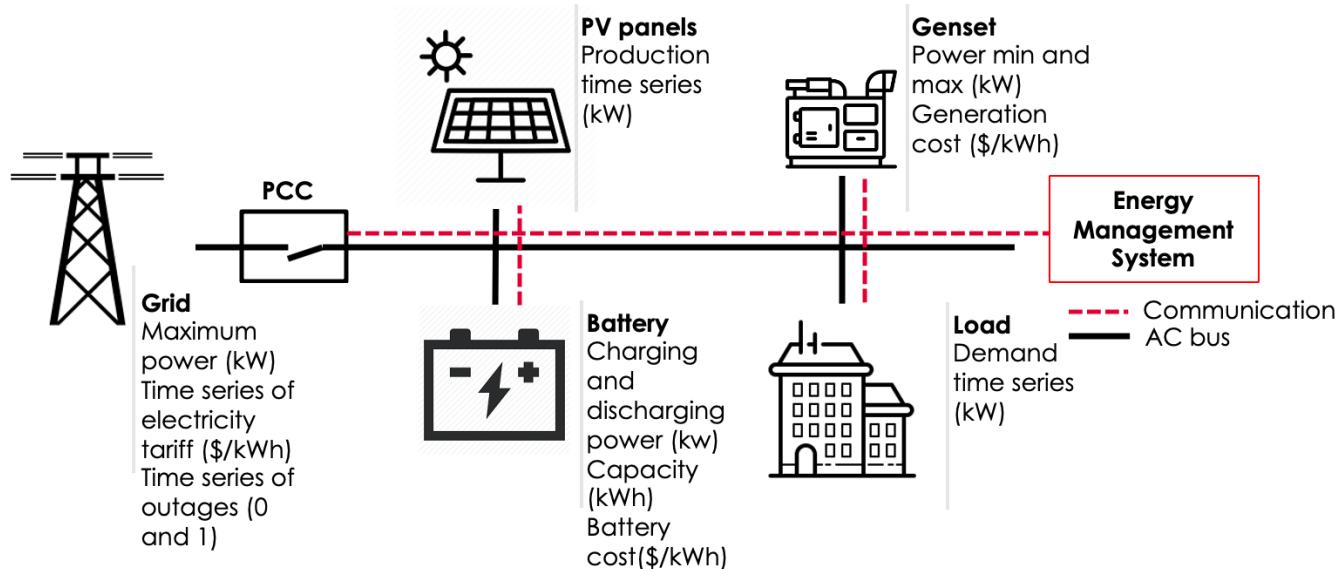


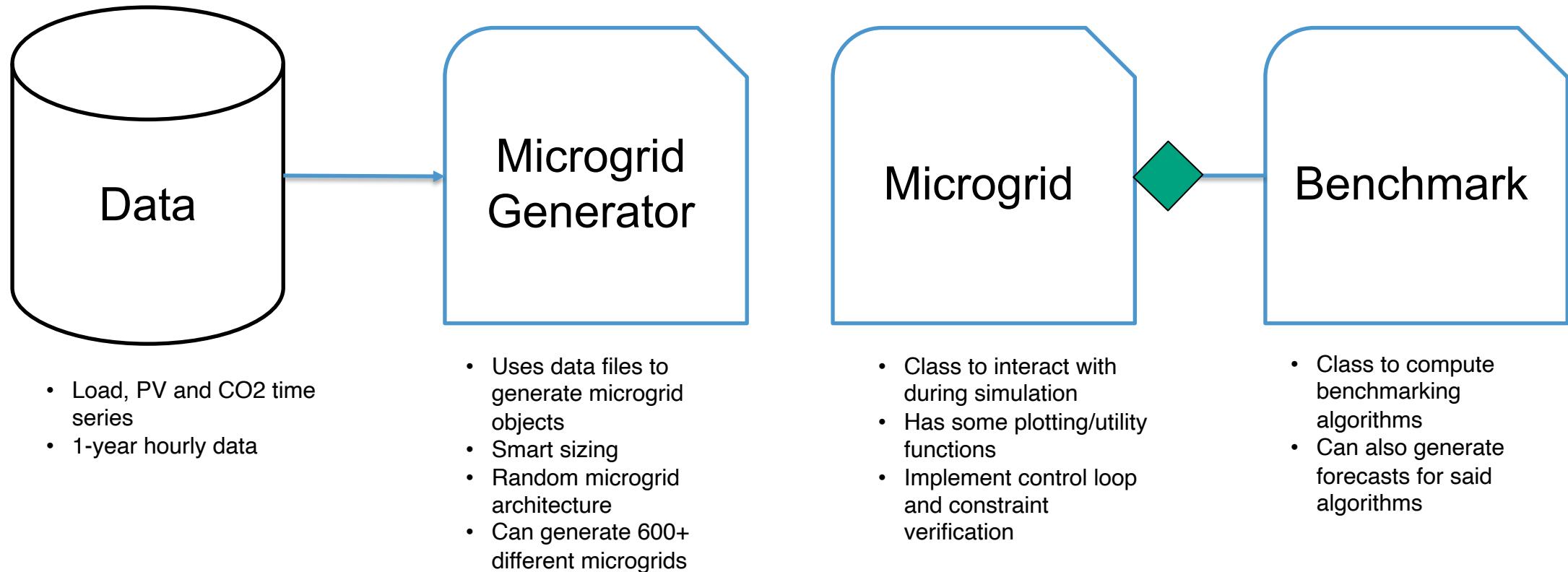
pymgrid: An Open-Source Python Microgrid Simulator for Applied Artificial Intelligence Research


Gonzague Henri, Tanguy Levent, Avishai Halev, Reda Alami, Philippe Cordier

12/11/2020

<https://github.com/Total-RD/pymgrid>

What is pymgrid?



pymgrid is an open-source microgrid simulator. It has been built to be modular and for applied RL research

pymgrid materialized from the observations:

- Lack of open data for microgrids
- There was no way to generate a large number of microgrids for AI research
- Existing simulators did not have RL-friendly API

Architecture: one class to generate microgrid, one to handle the simulation

Code to interact with microgrid

```
#With train_test_split, the microgrid data is split into a training and a
    testing set
mg.train_test_split()

#an agent can be trained with a loop based on the one below:
for epoch in range(nb_epoch): # that needs to be specified by the user
    mg.reset() ←
    while not mg.done: #done turns to True at the last timestep
        ctrl = #an action to fill the control_dict
        mg_data = mg.run(ctrl) ←

#now that the agent is trained, we can switch to the testing set
mg.reset(testing=True) ←

#we can use the same loop to go through the testing set
while not mg.done: ←
    ctrl = #
    mg_data = mg.run(ctrl)
#we can print the final cost:
mg.print_cost()
```

Function to reset the time series dictionaries and reset the battery

Move forward one time-step

Passing testing=true change the dataset used to the testing set

Done = True indicates the last timestep has been reached

Scenarios: two datasets that can be used to test control algorithms

Table 4: Numerical results on pymgrid25

Architecture	Metric (k\$)	MPC	Rule-based	Q-learning	Q-learning + DT
All	Mean cost	11,643	19,265	389,234	13,385
	Total cost	291,086	481,636	9,730,870	334,624
Genset only	Mean cost	19,722	57,398	337,385	24,777
	Total cost	78,890	229,593	1,349,543	99,109
Grid only	Mean cost	8,150	8,372	383,105	8,524
	Total cost	73,352	75,350	3,447,945	76,718
Grid + Genset	Mean cost	19,107	22,327	480,107	22,376
	Total cost	57,322	66,982	1,440,322	67,130
Weak grid	Mean cost	9,058	12,190	388,118	10,185
	Total cost	81,522	109,711	3,493,059	91,666

- We would like to generate scenarios of pre-computed microgrids
 - **Pymgrid25**: microgrids with different architecture
- In those scenarios, the benchmark algorithms would already be computed, can be used to compare performance across algorithms / research group

Two Gym environments are available

Gym
environments

- The environment follow standard gym API, taking one microgrid as "env_config"
- Notebook available for an example how to use the environment with Ray rllib
- So far, two environment with discrete action spaces are available:

Priority list

Discretized action space

Code available on github:
<https://github.com/Total-RD/pymgrid>

You can install it today with
pip install git+<https://github.com/Total-RD/pymgrid/>

by | Computational Science Engineering
Data Science & Artificial Intelligence