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Optimal Power Flow (OPF) Challenges
● Proliferation of intermittent renewable energy resources in power systems.

○ Difficult to sustain accurate representation of system state.
○ Requires OPF solutions in near real-time.

● Computational complexity.
○ Fundamental form (AC-OPF) is a non-convex and non-linear optimization problem.
○ Exacerbated with inclusion of:

■ Unit commitment.
■ Security constraints and post-contingency corrective actions.
■ Generator-wise emissions costing [1].

● Sub-optimality of cheap approximations.
○ e.g. DC-OPF.
○ Economic losses.
○ Wasted generation => unnecessary emissions.
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ML Aided OPF
● Use ML to assist solving OPF at scale.

○ Leverage underlying structure.
○ Train offline with real-time inference => negligible online computation.

● Main strategies:
○ Regression [2-5].
○ Classification [6-8].

Classification

Regression
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ML Aided OPF: Regression
● End-to-end [2]

○ Advantages:
■ Doesn’t require conventional (online) optimization.

○ Challenges:
■ Not a smooth function of the grid parameters => requires a lot of training data.
■ No guarantee of feasibility (or optimality) => poses security risks to the grid.
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ML Aided OPF: Regression
● Warm start [2]

○ Advantages:
■ Can theoretically expedite convergence to the optimal solution.
■ Feasibility enforced by the iterative solver (optimality guaranteed).

○ Challenges:
■ Marginally sub-optimal initialization could increase computational burden.
■ Only primal variables are initialised => duals still need to converge.
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ML Aided OPF: Classification
● Reduced OPF [6]

○ Advantages:
■ Only a fraction of constraints are binding at the optimum.

● Reduced optimization problem.
○ Challenges:

■ Potential omission of important constraints => false negatives.
■ Poses security risks to the grid.
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ML Aided OPF: Classification
● Optimally Reduced OPF [10]

○ Advantages:
■ Feasibility and optimality guaranteed.

● Converges to objective akin to that of the full problem.
○ Challenges:

■ Requires iterative feasibility test.
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Examined NN Architectures
● Fully-connected NN (FCNN)

○ Vectorised input domain.
○ Lacks sufficient relational inductive bias to exploit underlying 

structure.

● Convolutional NN (CNN) [11]
○ Represent the electrical grid as a pseudo-image.

■ Exploit spatial correlations within the electrical grid.
○ Dependant upon geometric priors not observed in the graph domain.

■ e.g. shift invariance.

● Graph NN (GNN) [12]
○ Represent the electrical grid as a graph.

■ Assumption of shift invariance drops
● Filters no longer node agnostic.

■ Lack of natural order.
● Operations are permutation invariant.

○ Directly incorporate important topological information of power grids 
in the NN model. 8



Experimental Setup
● Grids

○ Synthetic grids from Power Grid Library (benchmarks).

● Sample Generation
○ 10k samples generated for two input domains.

■ Load active/reactive power.
■ Load active/reactive power, maximum active/reactive generator output, line resistance/reactance values and  line 

thermal limits.

● Computational Tools
○ Data generated in Julia using PowerModels.jl to solve OPF (IPOPT solver).
○ Models constructed in Python (3.0) using PyTorch and PyTorch Geometric.

● Systematic Evaluation
○ Input domain
○ Model Architecture

■ FCNN, CNN and GNN (GCN, CHNN, SNN).
○ Learning Framework

■ Regression
■ Classification

Spectral Graph Convolution:
● GCNConv
● ChebConv

Spatial Graph Convolution:
● SplineConv
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Results: Regression
 Average Test Set MSE

Only LoadAll Parameters

Average test set MSE values of regression models.
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Results: Classification
Test Set Receiver Operating Characteristic Curves
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Next Steps 
● Regression

○ Incorporate methods to maximise legality of inferred optimal solution.
■ Parameter scaling.
■ Penalisation of constraint violation in objective.

● Classification
○ More sophisticated objective functions.

■ Explicit encoding of number of false negatives.
■ Weighted binary cross entropy.
■ Weighting individual constraints.

○ Applying predictive performance of GNNs to augment meta-optimization [10].
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Thank You!
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