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Optimal Power Flow (OPF) Challenges

e Proliferation of intermittent renewable energy resources in power systems.
o Difficult to sustain accurate representation of system state.
o Requires OPF solutions in near real-time.

e Computational complexity.
o Fundamental form (AC-OPF) is a non-convex and non-linear optimization problem.
o Exacerbated with inclusion of:
m  Unit commitment.
m  Security constraints and post-contingency corrective actions.
m Generator-wise emissions costing [1].

e Sub-optimality of cheap approximations.
o e.g.DC-OPF.
o Economic losses.
o  Wasted generation => unnecessary emissions.



ML Aided OPF

e Use ML to assist solving OPF at scale.

o Leverage underlying structure.

o Train offline with real-time inference => negligible online computation.
e Main strategies:

o Regression [2-5].

o Classification [6-8].
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ML Aided OPF: Regression

e End-to-end [Z]
o Advantages:
m Doesn’t require conventional (online) optimization.
o Challenges:
m  Not a smooth function of the grid parameters => requires a lot of training data.
m  No guarantee of feasibility (or optimality) => poses security risks to the grid.
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ML Aided OPF: Regression

e \Warm start [2]

o Advantages:
m Can theoretically expedite convergence to the optimal solution.
m Feasibility enforced by the iterative solver (optimality guaranteed).
o Challenges:
m  Marginally sub-optimal initialization could increase computational burden.
m  Only primal variables are initialised => duals still need to converge.
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ML Aided OPF: Classification

e Reduced OPF [6]

o Advantages:
m  Only a fraction of constraints are binding at the optimum.
e Reduced optimization problem.
o Challenges:
m Potential omission of important constraints => false negatives.
m Poses security risks to the grid.
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ML Aided OPF: Classification

e Optimally Reduced OPF [10]

o Advantages:
m Feasibility and optimality guaranteed.

e Converges to objective akin to that of the full problem.
o Challenges:

m Requires iterative feasibility test.
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Examined NN Architectures

e Fully-connected NN (FCNN)

o  Vectorised input domain.
o  Lacks sufficient relational inductive bias to exploit underlying
structure.

e Convolutional NN (CNN) [11]

o  Represent the electrical grid as a pseudo-image.
m  Exploit spatial correlations within the electrical grid.

o  Dependant upon geometric priors not observed in the graph domain.
m eg.shiftinvariance.

e Graph NN (GNN) [12]

o  Represent the electrical grid as a graph.
m  Assumption of shift invariance drops
e  Filters no longer node agnostic.
m  Lack of natural order.
e  Operations are permutation invariant.
@ Directly incorporate important topological information of power grids
in the NN model.




Experimental Setup

e (Grids
o  Synthetic grids from Power Grid Library (benchmarks).

e Sample Generation

o 10k samples generated for two input domains.
m Load active/reactive power.
m Load active/reactive power, maximum active/reactive generator output, line resistance/reactance values and line
thermal limits.

e Computational Tools

@ Data generated in Julia using PowerModels.jl to solve OPF (IPOPT solver).
o Models constructed in Python (3.0) using PyTorch and PyTorch Geometric.

¢ SyStematIC Evaluation Spectral Graph Convolution:

o  Input domain . GCNConv

o Model Architecture ey e ChebConv
m  FCNN, CNN and GNN (GCN, CHNN, SNN).
o Learning Framework
m Regression

R Spatial Graph Convolution:
] Classification

e  SplineConv



Results: Regression

Average test set MSE values of regression models.

Case (P = Pioad) FCNN CNN GCN CHNN SNN
73-ieee-rts 107* 6.613 7.625 0.556 0.612  0.527
118-ieee 107* 2171 3.042 0306 0.334 0.329
162-ieeet-dtc 1072 9.492 6.026 3.341 3.039 2.145
300-ieee 1072 3.654 5.973 2283 2.156 1.948
Case (® = &) FCNN CNN GCN CHNN SNN
73-ieee-rts 107% 4916 5.241 2011 1.953 1247
118-ieee 107 2.621 3.487 0.396 0.450 0.372
162-ieeet-dtc 1072 2.783 4585 1.411 1.682 1229
300-ieee 107Y  1.293 1.466 0.723 0.711 0574

Average MSE

Average MSE

Average Test Set MSE
All Parameters Only Load
73-ieee-rts 73-ieee-rts
10%°
10 20
L Al ‘,:W‘.'uv‘"- i 0k iy 10%°
10 30
10 35
0% m FCNN
-45 I
10 ——— CNN-2D
0 250 500 750 1000 0 250 500 750 1000 —— GCN
——— CHNN
——— SNN

4] NS

|.J'~'v.\|lu.|l|n."ﬂ-\l 4, {.Mi W‘u‘\ ‘

R AT A

oI

0 250 500 750 1000

0 250 500 750 1000

Sample ID

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
118-ieee ! 118-ieee

1
1
1
1
1
1
1
1
1
1
1
1
|
1
Sample ID |
:

1

1

1

10



Results: Classification

Test Set Receiver Operating Characteristic Curves
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Next Steps

e Regression
o Incorporate methods to maximise legality of inferred optimal solution.
m Parameter scaling.
m Penalisation of constraint violation in objective.

e C(lassification
o More sophisticated objective functions.
m Explicit encoding of number of false negatives.
m  Weighted binary cross entropy.
m  Weighting individual constraints.
o  Applying predictive performance of GNNs to augment meta-optimization [10].
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Thank Youl!

Thomas Falconer, UCL Energy Institute (Energy & Al Lab) thomas.falconer.19@ucl.ac.uk

Letif Mones, Invenia Labs
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