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Abstract

Forest fires, such as those on the US west coast in September 2020, are an important
factor in climate change. Wildfire modeling and mitigation require mapping vege-
tation ground cover over large plots of land. The current forestry practice is to send
out human ground crews to collect photos of the forest floor at precisely determined
locations, then manually calculate the percent cover of ground fuel types. In this
work, we propose automating this process using a supervised learning-based deep
convolutional neural network to perform image segmentation. Experimental results
on a real dataset show this approach delivers very promising performance.

1 Introduction

Vegetation data is essential for a wide range of research studies and management needs. In forested
areas, detailed information about vegetation is collected by human surveying crews. Vegetation
measurements are also heavily used in ecological research projects to establish baseline conditions
and track changes in vegetation over time in response to management actions or disturbances such as
industrial activity and for monitoring climate change impacts on ecosystems.

Documentation and measurement of live and dead vegetation are also extremely important for
research on wildfires, an important factor in climate change [9, 10]. The amount and type of live
and dead biomass in a location will influence how a wildfire behaves and how fast it spreads. In
the province of Alberta, Canada, an inventory program was established to measure and document
vegetation characteristics relevant to forest fires.

Forest fuels are assessed at different vertical layers. We focus on the classification and measurement
of fuels located on the ground such as grass, moss, and dead needles from conifer trees. Ground fuels
have been largely ignored in forest fire research because it is prohibitively costly to measure them
across large areas. In contrast, aerial fuels (tree crowns) have long been inventoried across large areas
using aerial photos to document forest tree species types.

In this work, we explore the use of machine learning and image processing techniques to extract
wildfire fuel data from nadir (downward-looking) photographs taken in forested ecosystems by
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either drones or field personnel. We frame the problem of ground vegetation classification as a
multi-class semantic segmentation task and propose to use a transfer learning methodology using
a deep convolutional neural network. Our approach results in pixel masks representing regions of
pre-specified ground cover types. The resulting data allows quantifying variables used in wildfire
propagation modeling, such as the primary ground cover (e.g. grass, moss, needles, water, rock), the
ratios between dominant fuel types (grass, moss, and needles), the presence and ground cover of
shrubs, and the existence, coverage, and dimensions of deadwood segments.

Figure 1: A sample image-label pair from our dataset along with our method’s classification result

1.1 Related work

A number of groups have published works on automated vegetation classification in agriculture, for
instance [1] (plants), [8] (grass and forb), and [2] (crops and weeds). Other methods based on LiDAR
data [5] and remote sensing [11] have been used for forest cover estimation. However, none of these
or similar publications specifically tackle forest ground cover classification using nadir photographs,
which involves complex and multi-class images as seen in Figure 1. Due to the novel application area,
we needed to perform the image segmentation labeling in-house, relying on a full-time employee
with expertise in forest ground cover recognition to generate the training data labels.
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2 Dataset and Methodology

The dataset consists of photos taken by ground crews at 28 field sample plots. At each sample plot,
16 ground fuel photos were taken in a uniform 4× 4 grid for a total of 448 images across all plots.
Of these, 330 images were manually labeled by the aforementioned expert, using ten label types:
firewood, forb, grass, Lichen, Moss-Feath, Moss-Other, Moss-Sphag, shrub, non-fuel, and void
(label for pixels which do not belong to any other classes). We divided this dataset into 290 images
for training and 40 images for testing. We are unfortunately not able to make the dataset publicly
available due to IP issues with the agency responsible for the data collection.

The segmentation task we are facing is complex since many vegetation types have subtle differences in
appearance, and exhibit irregular shapes and sizes. We used the supervised deep learning framework
in our work as it has been found to work well for semantic segmentation purposes. However, this
framework is notorious for requiring a large number of sample points for the training process, which
we did not have available. Therefore, we opted to use Transfer Learning when dealing with our
(small) dataset. Transfer learning involves transferring knowledge acquired by a machine learning
model in one particular task to another, related task.

In our case, we used the pre-trained Deeplabv3-Resnet101 model [3] as our base network for deriving
knowledge to solve our current task. This base network has been trained on a subset of the COCO
train2017 dataset, consisting of a few thousand images, using the 20 categories present in the Pascal
VOC dataset. The transfer learning methodology used in our work is shown in Figure 2. Our deep
convolutional neural network uses the convolution layers of the Deeplabv3-Resnet101 network as
a learned feature extractor. We then attached a classification head of 2048 neurons with sigmoid
activation. Therefore, each pixel was assigned 10 scores in the range of 0 to 1, for the 10 classes,
and the class with the highest score was declared as the predicted class for that pixel. We used the
cross-entropy loss as the objective function for training our network, and the Adam [6] optimizer for
updating the trainable parameters.

Since the multi-class (here 10 classes) semantic segmentation problem is quite complex, the set of
290 training images was found to be insufficient to obtain satisfactory results, even with the use of
the transfer learning framework. Therefore we employed data augmentation strategies to increase
the training set size fourfold: horizontal flip, Gaussian noise addition, and contrast reduction. The
first two augmentation strategies are fairly common. The contrast reduction strategy was specifically
motivated by our application, namely given that we expect the images to contain shadows occluding
the vegetation types, contrast reduction helps to simulate areas of low lighting which can be expected
in the dataset.

Also, in general, datasets generated from natural scenes for semantic segmentation have a significant
variation in the occurrence frequencies of different classes. To deal with this, we used median
frequency balancing to weigh the loss based on the correct label/class, where the weight given to
each class in the loss function is the ratio of the median of class frequencies over the entire dataset
divided by the class frequency [4].

3 Results and Discussion

Table 1: Ablation study results

Model mIoU Accuracy
base:Deeplabv3-ResNet101+no class balancing 0.285 0.936

base:FCN-ResNet101+no class balancing 0.321 0.942
base:Deeplabv3-ResNet101+class balancing (primary model) 0.352 0.950

base:FCN-ResNet101+class balancing 0.286 0.940

Due to the novel approach of our work, there does not exist any prior method which we can compare
against our results. We thus performed an ablation study with another standard base model, FCN
(Fully Convolutional Network, [7]). We also studied the impact of class balancing on the results of
these two different models.
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We used two standard metrics to evaluate our segmentation networks: mean intersection over union
(mIoU), i.e. the percentage of overlap between the true mask and our prediction output, and accuracy,
i.e. the percentage of pixels in the image which were correctly classified.

The results for our primary model show that the mIoU is low whereas the accuracy or percentage
of pixels classified correctly is high. This means that our model accurately predicts the prominent
vegetation classes in individual images. The low mIoU values are misleading since they give equal
weight to every class, irrespective of its proportion in an image. We, therefore, urge the reader to
focus on the latter metric, since the majority of the complex vegetation cover is classified reasonably
well. Below, we provide a sample of results obtained in our testing dataset images.

4 Conclusion

We have employed a deep convolutional neural network to perform semantic segmentation of ground
forest vegetation cover, used for modeling and mitigation of wildfires. A proprietary dataset of
pictures collected by ground crews was labeled by a human expert and used to train the classification
algorithm. Using an ablation study, the proposed approach was shown to provide very promising
results, specifically in terms of the percentage of testing image pixels correctly classified by the
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network. Future work will test the method on other datasets, compare the classification results against
traditional human-calculated ground cover estimates, and investigate deploying autonomous drones
to collect and analyze ground cover data in real-time.

The authors do not believe the work presented involves ethical aspects or future societal consequences.
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