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Abstract

Under climate change, the increasing frequency, intensity, and spatial extent of
drought events lead to higher socio-economic costs. However, the relationships
between the hydro-meteorological indicators and drought impacts are not identified
well yet because of the complexity and data scarcity. In this paper, we proposed a
framework based on the extreme gradient model (XGBoost) for Texas to predict
multi-category drought impacts and connected a typical drought indicator, Stan-
dardized Precipitation Index (SPI), to the text-based impacts from the Drought
Impact Reporter (DIR). The preliminary results of this study showed an outstanding
performance of the well-trained models to assess drought impacts on agriculture,
fire, society & public health, plants & wildlife, as well as relief, response & re-
strictions in Texas. It also provided a possibility to appraise drought impacts using
hydro-meteorological indicators with the proposed framework in the United States,
which could help drought risk management by giving additional information and
improving the updating frequency of drought impacts. Our interpretation results
using the Shapley additive explanation (SHAP) interpretability technique revealed
that the rules guiding the predictions of XGBoost comply with domain expertise
knowledge around the role that SPI indicators play around drought impacts.

1 Introduction

Drought is one of the most costly natural disasters in the world because of its broad impacts on various
sectors in society [1]. Ongoing climate change is inclined to increase the frequency and intensity
of drought by raising extreme variabilities over space and time in the hydrological cycle [2, 3, 4].
However, compared to other natural disasters, such as floods and wildfire, drought impacts often lack
structural and visible existence. Thus, drought impacts on different socio-economic aspects could
be either tangible or intangible, direct or indirect [3, 5]. Additionally, based on the propagation of a
drought event, its impacts could last for weeks to even years [1]. The complex drought characteristics
make it difficult to quantitatively monitor and evaluate drought impacts under climate change.

Many drought indicators have been developed to monitor drought intensity and frequency in recent
decades. They are commonly grouped into meteorological, agriculture, hydrological, and composite
drought indices based on the drought types [6, 7, 8]. However, only a few studies have tried to
connect and calibrate drought indicators to various drought impacts, although we need to transform
the temporal and spatial information of drought intensity and frequency into its impacts to help people
and government agencies proactively prepare and mitigate drought [9].

Overall, two main challenges for quantitatively evaluating drought impacts are: 1. the complexity
and non-linearity of relationships between drought indicators and drought impacts, and 2. scarcity of
quantitative impacts data in multiple sectors with high quality and spatial and temporal resolution.
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To address those challenges, several studies employed text-based data sets, such as the European
Drought Impact Report Inventory (EDII), as well as various regression models, in order to estimate
the drought impacts [10, 11, 12, 13, 14, 15]. However, only one of the studies employed a machine-
learning model (Random Forest) and results indicated that it had a better performance than regression
models for describing complex drought impacts [13]. Additionally, because of the complexity and
non-linearity of drought, the observations of its impacts are associated with the social vulnerability
and resilience of the local ecosystem and environment [16]. Hence, an imbalanced sample distribution
is common when the drought impacts data are collected, especially in the extreme categories, such as
fire. Because of the potentially extreme cost of drought impacts, using a modeled approach to predict
impacts will improve proactive drought response management. Overall, there is a need to develop a
study with a systematic machine learning framework to link the imbalanced and multi-dimensional
drought impacts with the drought indicators.

In this paper, we propose a machine-learning framework to predict multi-category drought impacts
based on drought indices and impact reports in the United States, which to the best of our knowledge
presents the first such attempt in the drought studies. The framework was developed based on the
extreme gradient model (XGBoost) and tested by a case study in Texas during an identified drought
period. We further interpret our machine learning algorithm using the Shapley additive explanation
(SHAP), in order to render results that can be deemed trustworthy by domain experts.

2 Data and Methods

2.1 Data

We acquired the text-based drought impacts data set from the Drought Impact Reporter (DIR), devel-
oped and maintained by the National Drought Mitigation Center (NDMC). The DIR collects drought
impacts from multiple resources and organizes them into nine categories1. Monthly Standardized
Precipitation Index (SPI) in the Pearson Type III distribution at the various temporal scales (1, 3, 6, 9,
and 12 months) were generated based on a 30-year precipitation record. The precipitation data set
was acquired from the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) [17].
Seasons and months were added to the predictors for counting the seasonality and temporal trend.
Additionally, to describe the spatial characteristics of drought impacts, we employed the following
geographic data sets in the case study: Land Cover (LC), Public Health Regions (PHR), Regional
Water Project and Development (RWPD), and Texas A&M AgriLife Extension Service Districts
(TAESD). All seasons, months, and spatial districts are categorical data sets.

2.2 The Proposed Framework

The framework of evaluating multi-dimensional drought impacts was developed based on the XG-
Boost model, combining the drought monitoring with a typical machine-learning pipeline.

Data preparation and feature engineering. The drought impacts from the DIR were quantitatively
summarized by month and converted to dummy variables (presence versus absence). The precipitation
records were aggregated monthly and calculated to SPI1-12. We applied one-hot encoding on
categorical data to remove the numerical categories and their effects on the model. All data were
processed at the county level and divided into training, validation, and test data sets by stratifying
based on the sample distribution of the impacts.

Addressing imbalanced data. For the drought impacts with a significant skew in the distribution
that the proportion of the positive class is smaller than 20%, we applied the Synthetic Minority
Oversampling Technique (SMOTE) and Random Undersampling on the training data sets in order to
balance the class distribution and increase the model’s response to the minority class in an attempt to
improve learning. This step significantly improved the F2 score and recall for the models with an
imbalanced sample distribution, such as fire. We also incorporated elements of cost-sensitive learning
in the training of XGBoost.

Train and validate XGBoost models. XGBoost is an efficient implementation of the gradient
boosting decision tree that employs the second-order Taylor series to proximate the cost function and

1The nine categories are agriculture, energy, plants & wildlife, society & public health, water supply &
quality, business & industry, fire, relief, response & restrictions, and tourism & recreation
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Table 1: Summary of models performance on predicting drought impacts in the test data set, and the
ratio of impacts is the number of impacts versus the total samples.

Evaluation

Category of Drought Impacts Ratio of Impacts Accuracy Recall F2 Score

Agriculture 0.69 0.86 0.93 0.92
Plants & Wildlife 0.29 0.79 0.79 0.74
Society & Public Health 0.50 0.90 0.96 0.94
Water Supply & Quality 0.36 0.78 0.51 0.55
Fire 0.11 0.88 0.80 0.68
Relief, Response & Restrictions 0.36 0.85 0.72 0.74

adds the regularization term in the objective function [18]. The reasons why we selected XGBoost to
build models are five-fold. 1. Rule-based models such as decision-tree-based models are generally
better suited than deep learning algorithms considering that our data set is of moderate size. 2.
XGBoost models are convenient to build, in that they can attain highly-optimized performance
by following standard hyperparameter search techniques implemented using stratified k-fold cross
validation resampling during the training phase. XGBoost also can be easily trained in such a way
to reduce overfitting. 3. XGBoost has been used successfully for winning several machine learning
competitions. 4. Previous drought studies have used XGBoost for predicting meteorological indicators
[19, 20]. 5. XGBoost can incorporate elements of cost-sensitive learning where a cost-matrix can help
influence the model to produce less false negatives. We built and trained an XGBoost model for every
selected category from the text-based drought impacts data. The binary cross-entropy loss function
was applied in all of the models. Additionally, we tuned the following hyperparameters: gamma
and the maximum depth of the XGBoost trees to activate pruning; lambda, the L2 regularization
parameter; as well as the scale of positive weight that provides cost-sensitive training. A stratified
10-fold cross validation was used to validate the model’s stability on the validation data set after
fine-tuning. The cross validation was designed in such a way so as to choose the hyperparameters that
optimized the F2 score and area under the precision-recall curve (PR AUC). The latter two metrics
emphasize that the recall values of our model are more important than precision.

Test and interpret models. To evaluate the models’ performance, we calculated the F2 score, recall,
and accuracy on the test data set. The F2 score is the F-beta measure when beta is equal to 2 so as
to increase the weight of recall. The F2 score and recall were selected because we considered the
false negatives more costly than the false positives in predicting drought impacts. Additionally, the
SHAP was employed to estimate each feature’s contribution to the model and explain the interactions
among features.

Our work was written using Python 3.7 with the packages: scikit-learn, xgboost, numpy, pandas,
gdal, netcdf4, xarray, geopandas, and climate_indices.

3 Results and Discussion

To examine the framework, we developed a case study for one of the most severe droughts in Texas
from October 2010 to June 20151. Energy, business and industry, and tourism and recreation were
dropped from the category because they accounted for less than 5% of the drought impacts during the
period. Table 1 summarizes the proposed framework’s performance for assessing multi-dimensional
drought impacts on the test data set. Except for water supply and quality (0.78) and plants and wildlife
(0.79), the rest models’ accuracies ranged from 0.85 to 0.90. The water supply and quality model also
had the lowest recall (0.51) and the F2 score (0.55). If we exclude this model, the rest of the models
had recall values ranging from 0.72 to 0.96 and F2 score from 0.68 to 0.94. The fire model has the
largest difference between the recall and the F2 score because we sacrificed the precision to gain
a higher recall. Further studies are required to investigate why the water supply and quality model
poorly performed. Overall, the framework has a good performance on evaluating various drought
impacts using hydro-meteorological drought indices.

1The period was identified based on the time-series plot from the United State Drought Monitor.
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Figure 1: SHAP summary plot for SPI. Figure 2: SHAP main effect plot for SPI6 and SPI12.

We now try to interpret the best-performing model using SHAP. Figure 1 shows the SHAP summary
plot for drought indicators. Since the SHAP explainer has no explicit support at interpreting the
one-hot encoded categorical data sets, we dropped them from the plot. The order of the features
reveals their contributions to the model of society and public health impacts. The SPI with a 12-month
moving window has the most significant impact on the model, followed by SPI6 and SPI9. SPI1 has
the lowest impact on the model. Besides, most positive contributions result from the negative SPI
values, except for some cases in SPI6 and SPI9, where some positive SPI values positively impact the
model. This is in line with domain knowledge and expertise as follows. Typically, prolonged drought
events are likely to lead to notable impacts on society and public health. Quick and minor drought
events may not have any significant effects in this particular category because of the resilience in
the human dimension. While SPI12 could enhance the signal of severe and prolonged droughts, one
would expect it would have a more significant role in the model. However, future studies are required
to explore why some higher positive SPI values would positively influence the drought impacts on
society and public health. A possible inference is the quality of the drought impact data sets. Figure
2 is the SHAP main effect plot for SPI6 and SPI12 with the largest impacts on the model. The two
scatter plots have a similar trend: the lowest values have the largest impacts on the model, while the
impact on the model decreases with the SPI values increasing. It indicates that lower negative values
in SPI6 and SPI12 would increase the probability of drought impacts on society and public health.
However, further studies need to be done to explain the minor peak where SPI6 is around 0.8.

4 Conclusion and Future Work

Quantitatively identifying the various drought impacts is always a challenge to researchers. However,
it is critical to transform and connect the temporal and spatial information from hydro-meteorological
drought indicators to different drought impacts. This paper proposed an XGBoost-based framework
to assess multi-category drought impacts with SPI and text-based data from the DIR. The framework
has a good performance on the case study in Texas. The accuracy from the models running on test
data sets ranged from 0.78 to 0.90, and the F2 score was from 0.55 to 0.94. We also explained and
discussed the model for the drought impact on society and public health by applying the SHAP
explainer, which provides a novel insight of drought impacts on society and public health. The results
reveal that SPI12 had the greatest impacts on the society and public health model, and that negative
SPI6 and SPI12 values might better explain the occurrence of drought impacts on society and public
health more so than other indicators.

Further studies are recommended to investigate more profound reasons and linkages among the
SPI indicators and drought impacts. Future work will focus on exploring the explanation of the
categorical data sets and the model outputs from the other drought impacts. It is also worth applying
the proposed framework to larger spatio-temporal data sets. This study opens the door to explore more
machine-learning and deep-learning methods on converting information from the drought indicators
about the intensity, frequency, and spatial extent to drought impacts.
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