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Abstract—Photovoltaic (PV) power is affected by weather
conditions, making the power generated from the PV systems
uncertain. Solving this problem would help improve the reliability
and cost effectiveness of the grid, and could help reduce reliance
on fossil fuel plants. The present paper focuses on evaluating
predictions of the energy generated by PV systems in the United
Kingdom Gaussian process regression (GPR). Gaussian process
regression is a Bayesian non-parametric model that can provide
predictions along with the uncertainty in the predicted value,
which can be very useful in applications with a high degree
of uncertainty. The model is evaluated for short-term forecasts
of 48 hours against three main factors—training period, sky
area coverage and kernel model selection—and for very short-
term forecasts of four hours against sky area. We also compare
very short-term forecasts in terms of cloud coverage within the
prediction period and only initial cloud coverage as a predictor.

I. INTRODUCTION

Fossil fuels are the primary source of energy worldwide,
accounting for 84% of primary energy use [1]. However, the
world seeks alternatives, and renewable energy has gained
interest: its consumption share has grown strongly to over 40%
(excluding hydroelectricity) of the global growth in primary
energy in 2019 compared to 2018, with solar and wind power
being the greatest beneficiaries [1]. The chief concern that
accompanies solar energy is its uncertainty, which is mainly
affected by weather conditions [2]. Being able to predict power
generation mere hours ahead would help control the amount
that must be generated from fossil fuels, reducing the amount
of carbon dioxide (CO2) emissions produced. There are two
main forecasting methods: model-based approaches and data-
driven approaches. An example of model-based approaches
is numerical weather prediction (NWP) which employs a set
of equations to describe the flow of fluids. Model-based ap-
proaches can be complicated and computationally costly. Data-
driven approaches, on the other hand, do not use any physical
model. They are easier to implement and require no prior
knowledge about weather forecasts. Forecasting techniques
can be deterministic or probabilistic [2] [3]. Probabilistic
approaches can predict a range of values with probabilities,
and thus are more appropriate for forecasting applications.

In this work we evaluate the accuracy of short-term predic-
tions of the amount of energy generated from photovoltaic
(PV) systems using Gaussian process regression (GPR),
trained using historical data of power output from PV systems
together with cloud coverage obtained from high-resolution
visible (HRV) satellite images.

Integrating PV systems into the grid cannot be efficient
unless there is reliable information about power forecast [7].
This is because, whilst it is possible to handle small energy
drops by generating slightly energy more than demand, sig-
nificant power drops must be replaced within seconds. Fossil
fuel plants can take hours to spin from start, and storage
battery devices are costly and inefficient for large quantities of
photovoltaic panels [8], [9]. Short-term energy prediction can
help to determine how much spinning reserve to schedule [8].
Spinning reserve is the unused power capacity which can be
activated on the authority of the system operator to serve addi-
tional demand [10]. Numerical weather prediction models are
useful for predicting elements such as temperature and wind
speed, especially in the short term. However, predicting solar
irradiance can be inaccurate and very short-term predictions
might be inapplicable, for several reasons [8], [11]:

• Numerical weather prediction models require at least an
hour to execute. This is a problem, especially for cloud
forecasting, as it can change rapidly.

• There is no high demand for solar irradiance.
• Solar irradiance is computationally expensive to calculate.

The gap between the necessity and difficulty of predictions
which use conventional forecasts opens the door for machine
learning. Different solar forecasting models have been devel-
oped throughout the years, some of which have achieved great
success in solar forecasting. Artificial neural networks [12],
[13] and support vector machines [3], [14] are examples of
popular models. Artificial Neural networks are known for their
ability to model complex and non-linear relationships. For
time-series applications Gaussian processes (GPs) appear to be
recommended for their ability to handle complex relationships
[10]. Our appendix explains GPs in more detail; we next
discuss research conducted on GPs for PV modelling.

Weighted Gaussian Process Regression (WGPR) [2] assigns
weights to each data sample, such that high outliers will
have lower weights. The forecasting process involves multiple
levels, and the model considers eight attributes: solar radiation,
photosynthetic active radiation, ambient temperature, wind
speed, gust speed, precipitation, wind direction, and humidity.
The model has a training data period of approximately 33 days
and a validation period of five consecutive days at five-minute
intervals. Solar radiation and photosynthetic active radiation
(PAR) were the most important of the predictors considered.

Gaussian process quantile regression (GPQR) model is



discussed in [10], [14]. Quantile regression aims to estimate
the quantiles of the conditional distribution of predicted values
given predictor values, which makes the model more robust
against outlier predictions. In addition, it captures the rela-
tionship between input and output variables. The GP model is
trained with data from 20 days to predict the power load for the
following seven days. The results show that GPQR performed
better than GPR by 0.26% on average (using mean absolute
percentage error, MAPE) for one-hour predictions and 0.49%
on average for two-hour predictions.

Other papers have discussed models based on GPs [16]–
[18]. Both the models we discussed show better results when
compared to GPR in their own comparisons. However, the
accuracy difference is not large, and the added sophistication
may imply heavier computational demands.

According to [14], clouds are one of the factors that have a
significant influence on solar radiation. It is essential to note
that, other than the issues mentioned regarding NWP, cloud
coverage data are parameterised, whilst depending on satellite
images can provide more accurate readings [8]. Parameteri-
sation means that the information is converted to an abstract
value that presents general knowledge. For example, instead
of resolving clouds, general information is provided, such as
whether the day was sunny or cloudy.

The question raised in this paper is: “Can a simple Gaussian
Process Regression model accuracy enhance by depending on
satellite images instead of Numerical Weather Predictions?”
This paper’s contributions can be summarised as:

• Exploring different factors that can enhance short-term
forecasts (48 hours) according to satellite images.

• Exploring different factors that can enhance very short-
term forecasts (four hours) according to satellite images
at each point of the forecast and initial satellite images
at the moment of the forecast.

• Comparing forecasts depending on cloud coverage at each
point and the initial cloud coverage for very short-term
forecasts (four hours).

II. METHODOLOGY

The model was trained based on historical data and cloud
coverage. The experiments were divided into two sets. The
first set of experiments examined three factors to obtain the
most accurate solar power forecasts for the following 48 hours:
training period, sky coverage area and kernel structure. The
second set of experiments examined very short-term predic-
tions for the subsequent four hours in terms of sky coverage
area. In addition, a comparison was made between forecasts
with consideration of cloud coverage within the prediction
period and forecasts with only initial cloud coverage provided.
A third set of experiments was conducted to test the influence
of the periodic kernel on model accuracy. However, the model
failed to follow the trend of the actual power generated. Hence,
this set of experiments is not discussed in the paper.
The results of the first and second sets evaluated amongst
four different PV systems in the United Kingdom. The paper
assumes that the cloud forecast data will be provided either by

cloud forecasting models or by prediction algorithms in case
applied as a real-world application. This section describes two
aspects: data preparation and model accuracy evaluation.

A. Data Preparation

The model uses historical data from given PV systems
and cloud coverage to predict the amount of energy in the
following four and 48 hours. It uses three data sources,
including historical data on power generated from different
systems and the metadata of those systems, such as location,
system capacity and other system details. The third source is
satellite images in five-minute intervals. The first step was
to identify the geospatial boundary in transverse Mercator
projection (metres) of the United Kingdom. The next step
in the data preparation was to load PV system metadata
and convert latitude and longitude to transverse Mercator
projection. Then, systems outside the United Kingdom were
identified and removed from the data. After that, data on
energy generated from systems over time were loaded, and the
period was specified. Data was then aligned with the metadata,
in addition to removing systems with missing metadata and
corrupt systems that generated power overnight. Next, the
satellite data were loaded. The time series rearranged from
date and time to integer sequence of numbers where the
distance between two numbers equals to five minutes and
mapped with the data. Cloud coverage was measured through
average visible HRV level in the area above the PV system.
Both cloud coverage and time series were merged with the
power generated by the PV system to form the training and
testing set for the model.

B. Model Accuracy Evaluation

This subsection explores different factors that affect model
accuracy. There are several well-known methods for evaluating
the performance of a prediction model. Mean square error, root
mean square error (RMSE) and MAPE are examples of error-
based measurement. In this paper, MAE is used to evaluate
the accuracy of the model. It is defined as follows:

MAE(Y, Y ∗) =
1

N

N∑
i=1

|yi − y∗i| (1)

Mean absolute error measures how much error expected on
average from a PV system; in this case, it is measured in
watts (W). If the model has a MAE of 100 W trained against a
PV system, then the predicted value can differ from the actual
value by 100 W on average. The reason why MAE was chosen
for this study is that it helps quantify the actual difference in
power load generated on average. Four PV systems around
the United Kingdom were tested in each trial. The tested
PV systems had the numbers 709, 1556, 1627 and 1872,
which were randomly selected from a pool of PV systems,
and had a capacity of 2,460 W; 3,870 W; 2,820 W and 3,960
W, respectively. The experiments were divided into two sets.
The first set of experiments predicted the power generated
from PV systems over the next 48 hours by testing different
factors, given the cloud coverage at each point. The first



factor to examine from the first set is the training period. The
drawback with the Gaussian process is that it does not scale
well by increasing the number of observations, in which the
training complexity can reach O(N3). Consequently, selecting
the features that will be considered in the model and the
number of observations that will be trained are crucial for
the training process. In addition, a long training period adds
seasonal uncertainty and efficiency reduction over time, which
may affect accuracy. Four periods are examined to compare
training periods and the accuracy of the model. The periods
are one week, two weeks, three weeks and one month. The
second factor examined is the average HRV value of the sky
area above the PV system. If the sky area considered is too
large, then the HRV values will not be relevant and will affect
the accuracy of the model. If the coverage area is too small,
then the solar irradiance captured by a PV system will also
be inaccurate. Each pixel on the map represents 1,000 m on
the ground. The tested sky areas were 2 by 2 pixels, 6 by
6 pixels and 12 by 12 pixels. The third factor examined is
the kernel. The kernel represents the prior knowledge about
the data and how the data are correlated. The kernel has a
significant effect on the model’s accuracy; therefore, it should
be carefully selected.
Before discussing different kernel choices, it is essential to
note that the white noise kernel is added to the main kernel in
all experiments conducted in this paper. This kernel represents
the noise in the data by adding uncertainty to the observed
data, and it does not change the prediction. The white noise
kernel represented by the following:

KWN (xi, xj) = σ2δ(i, j) (2)

where δ is the Kronecker delta, and σ2 is the variance
parameter.
Due to the sun’s movement, power generated from PV systems
is periodic in nature. Accordingly, the main kernel in the model
is the periodic kernel. However, the latter is a wrap kernel and
must have a base kernel that inherits from a stationary kernel.
In other words, the periodic kernel is applied in a domain of
a given stationary kernel. The periodic kernel with squared
exponential stationary kernel is given in (3). The squared
exponential (SE) kernel (4), rational quadratic (RQ) kernel (5)
and Matern kernel (6) are examined in this paper:

Kper−SE(xj , xj ;h,w, T ) =

h2exp

(
− 1

2w2
sin2

(
π

∣∣∣∣xi − xjλ

∣∣∣∣)) (3)

KSE = h2exp

[
−
(
xi − xj
λ

)2
]

(4)
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(

1 +
(xi − xj)2

αλ2

)−α

(5)
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λ
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√
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λ
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Fig. 1. Energy prediction vs. actual generation for a PV system with initial
cloud input on a cloudy day with scattered clouds, over 4 hours. MAE: 327.41.

where h is amplitude, λ is the input scale, T is the period, w is
the roughness (similar to role of λ in stationary covariances),
Γ() is s standard Gamma function, B() is a modified Bessel
function of second order, α is known as the index, and v con-
trols the degree of differentiability of the resultant functions
[24] The first two kernels provide a high degree of freedom
with relatively few hyperparameters, whilst the third kernel is
better for rougher and less smooth variations.

The second set of experiments predicted the energy gener-
ated over the next four hours by fixing the training period
to three weeks and the periodic kernel to Matern12 as a
base kernel. The experiments compared the accuracy of the
predictions against a sky coverage of 6 by 6 pixels and 12 by
12 pixels with and without cloud coverage input during the
specified period. When cloud coverage was not considered, the
last observed cloud coverage was used to predict the following
four hours.

III. RESULTS

Results for the first set of experiments (Table I) demonstrate
that MAE was lowest with one week of training and the
highest with one month of training. However, one week
of training may not be enough to cover different weather
situations; therefore, three weeks of training was considered
as a period in the next set of tests, as it has the second
lowest MAE. Moreover, it is worth mentioning that there was
a significant difference in training time between each training
period, since many GP tasks have complexity of O(N3).

On sky coverage, the model performed better with 12
by 12 pixel coverage for a 48-hour forecast, with average
MAE of 162.32. A kernel selection test found the Matern12
kernel to perform best on average. The conducted experiments
showed that a three-week training period, a 12 by 12 pixel
sky coverage and a periodic kernel with Matern12 base kernel
yielded the best results for 48-hour predictions. As the model
made use of cloud cover data, the results may be affected
by the accuracy of cloud coverage prediction. Figure 3 shows
MAE for the recommended settings per tested days.

We also tested the difference in accuracy with and without
cloud cover information, with a much shorter forecasting
period of four hours (Table II, Figure 3). We analysed four
selected days, each day featuring different weather conditions.
The lowest MAE was in a clear sky and highest with scattered
clouds. The model was able to follow the general trend in all



TABLE I
SET ONE EXPERIMENTS RESULT

Training Period Sky Coverage Kernel Structure System 709 System 1556 System 1627 System 1872 Average (MAE)

1 week

2X2 pixels Matern12

112.07 233.14 199.46 143.73 172.1

2 weeks 161.9 418.8 162.1 142.15 221.24
3 weeks 231.54 237.17 161.1 161.08 197.72
1 month 139.38 423.79 177 288.52 257.17

3 weeks

2X2
Matern12

231.54 237.17 161.1 161.08 197.7225
6X6 105.94 322.23 162.5 154.79 186.365

12X12 109.59 227.2 165.89 146.6 162.32

3 weeks 2X2
Squared

Exponential
113.705 236.67 177.54 152.13 170.01125

Rational
Quadratic

124.1 223.95 709.615 147.52 301.29625

Matern12 109.59 227.2 165.89 146.6 162.32

Fig. 2. MAE box plot for 48-hours forecasts presented by testing periods

TABLE II
SET TWO EXPERIMENTS RESULT

System Number With Cloud Coverage Without Cloud Coverage
6X6 12X12 6X6 12X12

709 145.45 285.99 322.98 327.67
1556 457.81 842.47 527.75 837.665
1627 180.74 192.12 196.57 202.56
1872 240.52 224.62 317.97 320.91

Average 256.04 386.3 341.31 422.2

cases, but cloud cover improved predictions. Note that for PV
system 1556, errors were generally larger than for others.

IV. CONCLUSION

This paper evaluated three different factors which affect
the GPR model when predicting power generated by PV
systems: the training period, sky coverage area and kernel.
The main advantage of a GP model is that not only can it
predict the amount of power generated, but it also captures the
uncertainty of the predicted value at each point. The analysis
shows that the Matern12 kernel is the best one amongst the
tested kernels, as it was more flexible and could capture the
uncertainty presented in the generated power. Furthermore, a
training period of three weeks and a sky coverage area of
12 by 12 pixels were the best choices for 48-hour forecasts.

Fig. 3. MAE box plot with outliers for four-hour forecasts. Upper: with
consideration of cloud coverage presented to the PV system. Lower: without.

In comparison, a sky coverage area of 6 by 6 pixels was
preferable for four-hour forecasts.

The results show that the model was able to accurately pre-
dict power generated by PV systems when cloud coverage was
stable. However, the model suffered from tracking very rapid
changes in cloud coverage when the clouds were scattered.
The results also confirmed that the main factor for short-term
predictions of solar power is solar irradiance and that cloud
coverage has a significant effect on power production.
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APPENDIX

Gaussian process (GP) is a probability distribution over
possible functions that fit a set of points. Having a joint
distribution of these random variables generates a multivariate
Gaussian distribution. A univariate Gaussian distribution can
be described by mean and variance.

N ∼ (µ, σ2) (7)

where N represents Gaussian distribution with mean µ and
variance σ2.
The joint univariate Gaussian distribution is described instead
by mean and a covariance matrix.

N ∼ (µ,Σ) (8)

where N represents Gaussian distribution with mean µ and
covariance Σ.
The covariance matrix will contains the variance of each ran-
dom variable, which expressed diagonally in the matrix, and
the covariance between the random variables. The covariance
between variables represents how two variables are correlated.
Assuming that we have two-variable Gaussian distribution
with variables y1, y2 having µ = 0 and covariance matrix[

1 0.9

0.9 1

]
. Figure 6 shows the possible values that y2 can

have given y1, described by the red Gaussian distribution as
y1 and y2 are correlated.

Fig. 4. Possible values for y2 given y1

Figure 7 shows an example of a ten-dimensional posterior
distribution, with observations on locations 2, 6, and 8. The
black line represents the mean and the grey area represents
the standard deviation.
Thus far, what has been presented is a discrete set of pre-
dictions and observations points. However, in order to model
observations with real values, we require arbitrarily large
sets and must calculate its covariance or otherwise have the
covariance generated by the covariance kernel function, which
will provide the covariance element between any arbitrary

Fig. 5. 10 dimensional posterior distribution with observations on locations
2, 6, and 8 [24]

samples. Choosing the covariance kernel function insufficient
on its own. Other properties, such as the right length scale
that represents the data more accurately, can still be vague.
Such properties are called hyperparameters, and they define
the shape of the covariance kernel function. Finding the best
values for these hyperparameters that represent the given data
is called ’training the model’.
For a set of random variables, such as X = {x1, x2, ..., xn},
then we can define the covariance matrix can be defined as

K(X,X) =


k(x1, x1) k(x1, x2) · · · k(x1, xn)

k(x2, x1) k(x2, x2) · · · k(x2, xn)
...

...
...

...
k(xn, x1) k(xn, x2) · · · k(xn, xn)


(9)

The entire function evaluation associated with points in X is
a draw from Multivariate Gaussian distribution.

p(Y (X)) = N (µ(X),K(X,X)) (10)

where Y = {y1, y2, · · · , yn} are dependent function values,
evaluated with random variables X = {x1, x2, ..., xn}.
Using the Multivariate Gaussian distribution we can obtain
posterior distribution over y∗ for test datum x∗ given by

p(y∗) = N (m∗,C∗) (11)

where,

m∗ = µ(X∗) +K(X∗, X)K(X,X)−1(Y (X)− µ(X)),
(12)

C∗ = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X∗, X)T .
(13)

Figure 8 is an example of Gaussian process plot in which the
red points represent observations and the blue line represents
the function that best fits the observations. The blue area



represents the uncertainty of the output [6] [21] [22] [24].

Fig. 6. Example of gaussian Process output [23]


