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WEATHER FORECASTING AND CLIMATE CHANGE

Increase in peak power demand, 
Auffhammer et al. (2016)

…but weather is 
becoming less 
predictable, Scher 
and Messori (2019)

Convolutional neural networks 
Chattopadhyay et al. (2020)
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Automated architecture, 
Maulik et al. (2020)

Extreme event forecasting, 
Sillmann et al. (2017)

Climate mitigation 
requires forecasting

ML can provide data-driven forecasts, but 
can be expensive to train/deploy
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NOAA SEA SURFACE TEMPERATURE
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Proper 
orthogonal 

decomposition
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Sea surface temperature measured 

weekly across 20 years

Make predictions for 
modal coefficients, 
then reconstruct to 
compare against 

data



HIGH AND LOW FIDELITY FORECASTS
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Prototypical low-
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High fidelity performs 
best on test data



FORECASTING
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Method outperforms climatology baseline: The average 
temperature for that time of year in that location



META-MODELING STRATEGY

▪ Take input data and perform low-
fidelity forecasts 

▪ Calculate difference between 
forecasts 

▪ If this exceeds threshold 
evaluate high-fidelity forecast 

▪ Else use low fidelity forecast

Algorithm for model selection:
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High fidelity function evaluations are expensive. How 
can we avoid them, without compromising accuracy?

Random strategy chooses to evaluate 
high or low fidelity models at random



SUMMARY:
▪ Climate mitigation requires accurate weather predictions machine learning methods 

can play an important role. 
▪ A combination of low and high-fidelity models can make accurate predictions fast and 

make results interpretable 

Also applied to DayMet dataset 

For more details 
see workshop 
manuscript
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