Learning the distribution of extreme precipitation from
atmospheric general circulation model variables
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Motivation

Challenges of precipitation prediction for large scale NWP models:
* Need to parameterize subgrid-processes
* Underestimation of precipitation extremes

Here:
* Infer precipitation from explicitly resolved atmospheric variables
using a deep artificial neural network (DNN)

P(t", x,y) =~ DNN(X(t", x,y, 2))

* P - Precipitation target: TRMM 3B42 V7 satellite based observations
* X - Atmospheric variables: here, vertical velocity from the IFS (ECMWF) 10-member ensemble mean



Architecture and loss function
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Weighted loss function

Averaged loss leads to:
* Good approximation of the target mean.
* Underestimation of extremes in the tails.

Here:

* MSE loss is weighted proportional to the
inverse of target frequencies.
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Results
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Test set: JJA season, 2015-2018. Resolution: daily, 0.5° grid (96 x 96).
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Linear 6.380 1.744 0.378

DNN  5.016 0.687 0.438
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Precipitation frequencies
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Future work

e Scaling the method to:
* Global data
* 3-hourly temporal resolution
* Test it on longer forecast lead times of several days

* Integration into a physical model
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