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Abstract

Wind energy is one of the fastest-growing sustainable energy sources in the world
but relies crucially on efficient and effective operations and maintenance to generate
sufficient amounts of energy and reduce downtime of wind turbines and associated
costs. Machine learning has been applied to fault prediction in wind turbines,
but these predictions have not been supported with suggestions on how to avert
and fix faults. We present a data-to-text generation system using transformers to
produce event descriptions from SCADA data capturing the operational status of
turbines and proposing maintenance strategies. Experiments show that our model
learns feature representations that correspond to expert judgements. In making a
contribution to the reliability of wind energy, we hope to encourage organisations
to switch to sustainable energy sources and help combat climate change.

1 Introduction

Machine learning can play an integral role in tackling climate change by ensuring greater reliability
of variable energy, such as wind energy (Rolnick et al.,[2019). There is a growing uptake of machine
learning in the wind industry to predict operational anomalies (Zaher et al., [ 2009; |Abdallah et al.|
2018). The average wind turbine, for example, suffers from a downtime of 1.6 hours every 1.5 days
(Peters et al.| [2012)), leading to losses of up to 1,600 USD per day (Milborrow} 2018)). There is
currently a paucity of intelligent decision support systems which cannot only predict the occurrence
of an impending fault but also generate a human-intelligible diagnosis of its cause(s). Data-to-text
generation has been explored for domains such as weather forecast generation (Sripada et al., 2004
Dethlefs and Turner], |2017; |Gkatzia et al.,|2017), spatial navigation (MacMahon et al., [2006)), sports
commentaries (Chen et al., | 2010; Mei et al.} 2016), amongst others. In this paper, we aim to establish
the feasibility of applying deep learning and natural language generation to the wind domain in order
to generate informative event descriptions of alarms using SCADA data and historical logs of alarm
messages. We hope that our initial study can pave the way towards Al-based intelligent decision
support systems for operations and maintenance for wind turbines, making them a more reliable
energy source and contributing to the uptake and sustainability of wind energy on the whole.

2 Data Description and Preprocessing

As input features, we used SCADA data from an operational turbineﬂ rated at 7MW, including 102
features from the turbine logs on electrical, temperature and pressure readings, operational sensors as
well as meteorological data. As outputs, we use human-authored event descriptions for 26 discrete
alarm types. See Table [I]for an example of a data structure and error description, where features
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1-n are sensor readings. A challenge with the original dataset is a substantial class imbalance across
alarm types. For instance, the Pitch System Fatal Error event accounted for 5,050 cases owing to
the fairly common pitch angle disorientation in turbines, while HPU 2 Pump Active For Too Long
only accounted for 2,525 cases. To avoid a biased generation policy that favours majority classes,
we use Synthetic Minority Oversampling Technique (SMOTE)|Chawla et al.| (2002) to address class
imbalance by generating more samples of a certain type while preserving the original data distribution.
Ultimately, we obtained 500 examples for each alarm type in an overall dataset of 13,000 samples.

Time Stamp Feature 1 (Xo) | Feature 2 (X)...... Feature n (X,,) | Event Description
dd/mm/yyyy hh:mm:ss | 2.104 0.890 8.124 Turbine Operating Normally
dd/mm/yyyy hh:mm:ss | 1.245 3.753 9.509 Pitch System Fatal Error

Table 1: Example of an input data structure and corresponding alarm log.

3 Learning models and experiments

We model our NLG system as an encoder-decoder architecture that takes as input a sequence of
SCADA features and outputs an alarm event description in natural language. We opt for a transformer
architecture for this task in the light of recent results that have shown that a transformer’s multi-head
attention principle to compute attention weights over sequences in a single iteration can make the
model both substantially faster on long sequences as well more accurate in some cases as outputs do
not depend on the sequential order of input processing (Vaswani et al.,[2017; |Devlin et al.l 2019). For
our experiments, we use a Transformer with 8 multi-head attention heads, model size of 64, and 3
dense layers for each head. We use two baselines: (1) Seq2Seq is an encoder-decoder model with
an LSTM, 200-dimensional word embeddings, 64 hidden neurons, a learning rate of 0.001, dropout
of 0.1, and Adam optimisation; and (2) Seq2Seq (Att) in a Seq2Seq model with LSTM and Luong
attention |Luong et al.| (2015)) using the same hyperparameters as above. For attention, we use the
concat score function to compute the alignment vectors, alongside the dot and general functions. We
split our dataset in a 80%-20% ratio into training and test data and use a batch size of 32. All models
were trained over 200 epochs.

4 Results

Table 2] shows results in terms of BLEU scores as well as human ratings and computation time.

Model BLEU-4 Semantic similarity | Fluency | Computation time
Seq2Seq 0.454 £+ 0.220 3.654) 3.14 (3) 1.42 min
Seq2Seq (Att) | 0.443 4+ 0.226 3.594) 3.17(3) 4.25 min
Transformer | 0.492 + 0.196 3.96 (4) 3.36 (4) 3.30 min

Table 2: Results in terms of BLEU score (with standard deviation), human ratings (median ratings
shown in parentheses) and computation time. The best performing model is shown in bold-face.

Objective Evaluation We can see that our Transformer clearly outperforms the other two models
in terms of BLEU scores, where Seq2Seq scores slightly higher than Seq2Seq (Att), likely due to
the relatively short sequences (5.49 words on average with a max sequence length of 14 words in the
training data). We also observe that Seq2Seq is the fastest model, followed by the Transformer. All
computation times were obtained with NVIDIA Tesla K80 GPUs on Google’s Compute Engine.

Subjective Evaluation To confirm our objective metrics and assess the semantic correctness of
generated outputs as well as fluency, a human rating study was conducted via Amazon Mechanical
Turk (AMT). Humans were asked to assign ratings on a 1-5 Likert scale for semantic similarity,
where 1 is not similar at all and 5 is identical. Similarly, for fluency, 1 is not fluent at all and 5 is
human fluency. We generated 200 random messages from the test set per model and asked 87 human
judges to rate them, leading to 1200 ratings in total. We can see from Table 2] that the Transformer
outperforms its baselines in terms of semantic similarity, arguably generating the most correct event
descriptions overall. It also scores highest on the fluency metric. We can see the BLEU ranking
confirmed with Seq2Seq being ranked higher for semantic similarity than Seq2Seq (Att), while the
models score similarly in terms of fluency with Seq2Seq (Att) slightly ahead.
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Table 3: Generated messages for each model, with remarks about their viability.

Error and output analysis Table [3]shows example messages generated with each of our models
alongside ground-truth references. For Seq2Seq we can see that while reasonable outputs are
generated for the first two situations, the model recognises an error in the last situation but is not
able to generate a coherent message. The Seq2Seq (Att) model generates coherent messages in all
cases, but refers to the wrong sub-component in the first example, confusing the oil tank with the yaw
brake. Similarly the second example confuses the pitch system with the wind direction transducer.
The final message is acceptable but highlights an error as “critical” rather than “fatal”. Finally, our
transformer generates the most semantically correct and coherent messages but still misses out on
nuances such as the exact tank that is being shut down.

Feature Importance for Alarm in Gearbox with Transformer Feature Importance for Alarm in Gearbox with Seq2Seq(Att)

Figure 1: Feature importance plot for an anomaly alarm in gearbox obtained with Transformer
model (left) and with a Seq2Seq (Att) model (right).

Figure [I| compares the features learnt by our Transformer and Seq2Seq (Att) model in terms of
the top 10 for the example of a gearbox alarm. According to the Transformer GBoxOpShaft-
BearingTempl_Max and GBoxOpShaftBearingTempl_Min are highly-ranked, which can likely be
attributed to overheating of the high speed gearbox shaft bearings and the gearbox housing, thus
resulting in an alarm for shutting down the oil tank due to an increasing gearbox temperature. In
contrast, feature scores for Seq2Seq (Att) give a fair sense of what is leading to the gearbox alarm.
However, the relevance of the features is less effective. Specifically, SubPcsPrivRefGenSpeediInch-
ing_Mean signifies a high speed generator inching problem, an indirect consequence leading to
contact with the generator but does not hint primarily at the root cause of the problem.

5 Conclusion

We have presented a novel application scenario and preliminary results for neural data-to-text
generation in the wind industry to assist engineers in understanding the context of an impending fault
and potentially prevent it. We have found that transformer networks hold promise for this task and
that their attention weights are closely aligned with expert judgements. We look in future to generate
messages that are longer and more informative than the data we have presented. We envisage the
embedding of our data-to-text component into a dialogue system to offer interactive decision support
for wind turbine maintenance, contributing to the reliability and uptake of wind energy.
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