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1. Overview

Greenhouse gases are major contributors to global climate
change; methane (CHy), carbon dioxide (CO;), and nitrous
oxide (N2O) are responsible for 80% of total atmospheric
radiative forcing (Stocker et al., 2013). Natural sources
of greenhouse gases, which include active volcanic sites,
marshes, and estuaries, are the largest sources of greenhouse
gas emissions; nearly half of all CO5 emissions are from
air-sea exchange alone (Solomon et al., 2007; Le Quéré
et al., 2012). An increase in anthropogenic sources within
the last 150 years, although volumetrically smaller than
natural sources, has nevertheless overwhelmed natural sinks
of these potent chemicals. We are therefore interested in
characterizing natural “climate drivers” (e.g., air-sea flux) or
natural processes that, as a result of increased anthropogenic
emissions, are “climate driven” (e.g., melting permafrost).

To provide insight into the magnitude of gas flux from nat-
ural sources, spatio-temporal distributions of gases, and
processes that drive local emissions, in sifu instrumentation
carried by a robotic platform is uniquely suited to study
small- to mid-scale emission events for extended periods
of time over large distances. However, collecting scien-
tifically rich datasets of dynamic emission events requires
adaptive, online planning under uncertainty and sophisti-
cated learned representations of physical phenomena, pos-
ing challenges for even state-of-the-art machine learning
and planning paradigms.

By uniting classical scientific computing and machine
learning techniques, we aim to create novel models of
environmental gas emissions that can be used in combi-
nation with decision-making and navigation under un-
certainty to collect scientifically valuable, in situ data on
natural greenhouse gas emissions.
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2. Motivating Field Studies

As motivation, we highlight two ongoing projects that ex-
amine gaseous emissions in natural environments: seasonal
Arctic thawing and volcanic outgassing (field sites illus-
trated in Appendix A).

Seasonal Arctic Thawing In the high-Arctic, seasonal
melt of landfast ice (e.g., ice over lakes, coasts), has been
shown to trigger large, episodic outgassing of CO- and CHy
(Zona et al., 2016; Lamarche-Gagnon et al., 2019; Karls-
son et al., 2013). Quantifying emissions during the spring
freshet period will help to refine emission budget models
for the region. Arctic thawing is directly impacted by a
warming climate, which triggers a positive feedback loop as
longer thaw seasons in more of the Arctic environment lead
to the release of sequestered gases (Ernakovich et al., 2014).
Our work will use underwater, surface, and aerial vehicles
to characterize outgassing at the land-ocean continuum.

Volcanic Outgassing Major volcanic eruptions produce
gases, aerosols, and ash that influence climate processes
such as cloud formation, solar reflectance, and upper ocean
fertilization (Robock, 2000). Single volcanic eruptions can
have a dramatic impact on global climate, as illustrated by
the Tambora volcano 1816 eruption which caused a decrease
in global temperatures up to 0.7°C and led to a wintry sum-
mer that resulted in major food shortages across the North-
ern hemisphere (Stothers, 1984). Even when not actively
erupting, volcanic gases diffuse through the soil and escape
through fissures and cracks in the crust, contributing to at-
mospheric concentrations. Our work will use aerial vehicles
to monitor gas ratios in order to develop a predictive model
of major geological events and passive emission rates.

3. Machine Learning and Autonomous
Sensors for Emission Models

We propose the following unified framework for au-
tonomous environmental monitoring: 1) using gas diffusion
models from physics-based scientific modeling to plan max-
imally informative data collection paths, and 2) using the
collected data to improve the science models via data-driven
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scientific machine learning. These two approaches should
reinforce each other in a feedback loop; initial models can
be used to select promising locations for collecting environ-
mental data, and machine learning techniques can use these
data to improve the emission models. This framework is
illustrated in Fig. 1.

The combination of these approaches is particularly com-
pelling: science models establish a rich structure for the data,
but are brittle under noisy, uncertain measurements and dif-
ficult to update with streaming data; machine learning is
incredibly flexible but suffers from low explainability and
data efficiency, which is valuable in scientific applications.

Informative data that can
reduce model uncertainty.

£

Learning Science Models Information Planning

1) Initialize neural nets using 1) Quantify model and
ODE/PDE models. parameter uncertainty.

2) Use neural nets within 2) Design planning objectives

to priortize informative data.

I(XGY) = Tpex Syey Py (@ p)log il

Data-driven and probabilistic
models of science phenomena.

Figure 1. The proposed sensing and learning framework. We pro-
pose potential techniques and technical issues for the problems
of learning science-driven models and planning informative data-
collection missions.

Learning Gas-Emission Models Our approach will
leverage recent work for improving scientific models using
machine learning techniques (Han et al., 2018; Raissi & Kar-
niadakis, 2018). Our scientific model for emission modeling
will be based on a simple and widely-used physics-based
model of gas diffusion - the Gaussian plume model. Gaus-
sian plumes are an approximate solution to the advection-
diffusion differential equations (Stockie, 2011):

where C is the gas concentration, {x, y, z} describe distance
from the source in R?, and 0 = {u, K,,, K, } are parameters.

In Fig. 1, we suggest two potential techniques for combining
machine learning and scientific models for gas emissions.
The first is directly initializing a neural network with solu-
tions to the advection-diffusion differential equations (Eq.
1), thereby enforcing initial structure in the network. The
advantage of this method could be to reduce the amount

of training data necessary for training the neural network
(Raissi & Karniadakis, 2018). The second technique would
leverage the ability for neural nets to act as nonlinear mea-
surement models (Johnson et al., 2016). We would sub-
sequently use these nets within a Bayesian framework to
estimate the parameters of the science model online with
streaming data and uncertainty quantification.

Adaptive Data Collection Given the objective of learn-
ing better scientific models of gas emissions, a robotic agent
should collect data in uncertain or inaccurately modeled
regions in order to improve the existing model. Previous
work in information planning for environmental applica-
tions has shown that selecting sensing locations according to
information-theoretic objectives allows for accurate and
data-efficient environmental models (Flaspohler et al., 2019;
Hitz et al., 2017; Singh et al., 2010). Estimating information
theoretic objectives requires accurate estimates of model
uncertainty. This constraint requires a learned gas-emission
model that allows for accurate uncertainty quantification.

Selecting optimal sampling locations to maximize an
information-theoretic objective function is a difficult plan-
ning problem. The robot must trade-off between taking
exploratory actions to learn the model, and exploitative
actions to take advantage of it’s knowledge. This can be
approached as a reinforcement learning (Stadie et al., 2015),
POMDP (Arora et al., 2017), or bandit problem (Krause
et al., 2008). However, each of these approaches have limita-
tions in large, continuous, dynamic and partially observable
environments. We plan to first develop a simulation frame-
work for evaluating proposed planners and then to consider
planning adaptive and efficient explore-exploit behaviors.

4. Impact

Natural greenhouse gas emissions from environmental pro-
cesses play a significant role in global climate, but are chal-
lenging to monitor due to their scale and variability. As
anthropogenic forcing begins to change the climate system,
these natural emission sources may enter into positive or
negative feedback loops that affect the climate system in
ways that are important to model and predict. We propose
a sensing and learning framework that leverages science
models derived from first principles and machine learning
techniques to collect informative observations that adapt the
models to complex, real phenomena. Several key technical
challenges include integrating few-shot and online learning
into scientific machine learning models, learning uncertainty
metrics, and performing near real-time decision-making in
large, continuous, high-dimensional environments. Within
the climate science community, our work will produce valu-
able datasets of in situ measurements and models of natural
greenhouse gas emissions.
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Figure 2. Application Environments: Shown are the two environments in which we intend to deploy robotic vehicles to gather observa-
tions of greenhouse gas emissions. (Left) The image from Cambridge Bay shows the surface vessel used during preliminary field work in
summer 2018. (Right) Venting sites at Yellowstone National Park, where a small gas sensor was incorporated into a drone vehicle and
tested. (Center) Map Imagery (©) 2019 TerraMetrics

A. Field work

Preliminary field work has been conducted for both mo-
tivating applications (illustrated in Fig. 2). In summer
2018, an unmanned surface vehicle with onboard gas extrac-
tion equipment was deployed in Cambridge Bay, Nunavut,
Canada to examine the content of methane and carbon diox-
ide in a local river system immediately after the seasonal
ice cover began to retreat. Preliminary results indicated
significantly elevated concentrations of both gases in the
water column, which ventilated rapidly into the atmosphere.
Future trials at this location in summers 2020 and 2021 will
focus more on identifying the source of these gases and
quantifying the rate of ventilation in the atmosphere.

In spring and summer 2019, a small gas sensor was tested
at Yellowstone National Park. This work was generally to
test the feasibility of detecting multiple gas species in the
atmosphere around active volcanic vents. Further trials with
the sensor package on a drone, and integrating the sensor
measurements into an autonomy framework, are planned
starting in early 2020.



