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Abstract: This paper presents the Future Arctic initiative, a multi-disciplinary training network
where machine learning researchers and ecologists cooperatively study both long- and short-term
responses to future climate in Iceland.

1. Introduction

Computational ecology recognizes ecological systems as complex and adaptive. It places a large
emphasis on mathematical methods and tools that can handle, or even require, a certain degree of
stochasticity. Second, it understands that data are the final arbiter of any simulation or model; this
favors the use of data-driven approaches and analysis. Finally, it accepts that some ecological systems
are too complex yet to be formulated in mathematical or programmatic terms. Depicting ecology
as a field in which mathematical and data-driven modeling do not interact much, and instead the
research work develops separately, Levin (1) suggested that ecology should move towards combining
them. Subsequently, the development of statistical models (7) and numerical approaches (3) based
on multivariate statistics have shown some ability to explain data. However, this combination yields
models that very rarely do give new predictions. One of the reasons is that current empirical and
experimental research is often lacking in integration of multiple ecosystem compartment interactions:
most project-based analysis is restricted to well-established system boundaries, current paradigms
and hypotheses based thereon. Even if this approach has moved forward the scientific knowledge
on the functioning of individual ecosystem compartments, it has strong limitations as shown by the
current in-ability of models to predict whole ecosystem carbon balances.

Consequently, despite decades of research, scientists still struggle to accurately determine the scale
of future carbon export (2) essential information to understand how climate change will affect Arctic
and Subarctic ecosystems. Key questions such as "How much carbon will Arctic emit under future
climate conditions?" and "How do the multitude of ecosystem processes, driven by plant activities
and growth, microbial activities and soil characteristics, interact to determine soil carbon storage
capacity?" remain unanswered. Colin Prentice, leading climate researcher of the Imperial College
of London, worded it in a provocative but also a confronting way: Our current ecosystem-climate
interaction models are better at predicting the past than the future.

In this paper, we present the Future Arctic initiative (http://www.futurearctic.be), a multi-
disciplinary training network where machine learning researchers and ecologists study jointly the
effects of climate change in Iceland.

2. Experimental Evidences: the ForHot site

The ForHot site (www.forhot.is) in Iceland offers a geothermally-controlled soil temperature
warming gradient, where Subarctic ecosystem processes are affected by temperature increases as
expected through climate change (6). Due to sub-soil lava streams, the soil on the ForHot site is
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heated from 0 up to +50◦C. The site consists of two different zones: a long-term zone, which is
known to be exposed to such heats for centuries and a short-term zone, which has only been heated
up to 8 years, due to a recent earthquake. This availability of a large range of temperature gradients,
at multiple time scales, is unique in the world, as they enable studying both long- and short-term
responses to future climate change now.

To exploit this unique site, a common network of permanent sampling plots has been set up, along a
soil temperature increase from +1◦C to +10◦C, both in the long- and short-term zone. Observations
collected over the last 5 years from the ForHot site diverge from the results expected in the most recent
ecosystem models. These observations point to the existence of small-scale ecosystem feedbacks
between ecosystem factors (either biotic or abiotic) and climate that are currently unidentified by
projections based on Earth System models (4). Thus, although current models are usually well-
enabled to explain the past, intricate climate-feedbacks at the ecosystem scale significantly complicate
the forecasting of the future.

It is now recognized that machine learning techniques provide massive potential to transform ecologi-
cal understanding (5). However, machine learning has so far not been adopted to identify complex
interactions that influence ecosystem scale carbon-fluxes. The challenge is nevertheless significant:
data acquisition has to be achieved across a gradient of expected soil temperature changes in the
highest possible frequency. Observation data from interaction processes do not necessarily verify
the working assumptions of standard machine learning techniques. For instance, empirical data
samples do not necessarily verify the independent and identically distributed (i.i.d.) assumption
when training/calibration datasets and testing/running datasets do not follow the same distribution.
Related measurement (variables) are affected by random errors that violate key assumptions of
ordinary least squares fitting since often non-Gaussian and heteroskedastic (their variance is not
constant instead of being unrelated to any of the explanatory/independent variables). Also, appli-
cability of nonlinear dimensionality reduction methods to obtain a low dimensional representation
for the data, i.e., uncover a set of points parameterizing the data, gets challenged. In addition to
the high-dimensionality of the data (of the order of 1000 for some bio-geochemical sets), nonlinear
dimensionality reduction techniques have to cope with the nonconvex nature of the parameter space
due to the complex topology of the data and/or their incompleteness. By enabling the automatic
discovery of complex/hidden patterns and extraction of spatio-temporal features from observational
data, these advances in machine learning would in turn steer significant qualitative and quantitative
progress in characterizing the interactions that influence ecosystem scale carbon-fluxes.

3. Methodology - The FutureArctic training initiative

Starting from the ForHot research area, the FutureArtic initiative is articulated around a set of
activities that combine research on key unknowns in both current ecosystem science and machine
learning for a mutual reinforcement to produce both explanatory and predictive models:

a) Soil and root system functioning: with studies focusing on i) the assessment of plant roots growth
(e.g., production, turnover) and changes in the timing of seasonal events (phenology), and ii) soil
microbial community physiology, composition and functioning, with multiple interactions to assess
the root rhizobiome-microbiome. Specific synergetic interactions will be realized by developing new
imaging technology for root growth assessment and for the identification of root taxa by hyperspectral
imaging.

b) Plant functioning: with a specific focus on i) plant and vegetation traits, community composition
and interaction with environmental controlling variables, ii) plant phenology and plant stress adapta-
tion/evolution to climate change, and iii) the development of novel unmanned aerial vehicles (UAV)
hyperspectral assessments.

c) Ecosystem carbon balance and the effects of warming on ecosystem-level CO2 fluxes by means
of i) detailed CO2 exchange measurements, ii) permanently coupled gas-flux chamber-lysimeter
analyzers, and iii) focus on the ecosystem source of soil CO2 emissions and seasonal variability
through isotope analysis.

Databases of i) root-rhizobiome-microbiome interactions, ii) ecosystem carbon balance and asso-
ciated carbon source, and iii) ecosystem productivity, plant stress and soil-plant metabolome and
elementome, will be used as input to identify complex interactions between multiple compartments
that influence ecosystem scale carbon-fluxes and predict their evolution.
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