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1 Introduction

Wildfires are rare catastrophic events that are influenced by global climate change and present ongoing
threats to life and property. The August 2019 IPCC report on climate change [1] notes that climate
change is “expected to enhance the risk and severity of wildfires” in many areas. Hence there is an
urgent need to accurately statistically model wildfire risks. Wildfire risk modeling requires accounting
for several separate but related risk components [2] which can be viewed as a “wildfire risk pipeline”.
First, one must model where fires are most likely to start, based on weather, human activity, and
related factors; then, based on a fire’s location, model the fire’s duration and size. Finally, a model
can project risk exposure, the number of lives or properties exposed to the fire.
Prior work has generally modeled each component in isolation and typically limited to small regions,
due to the varied spatiotemporal resolution and quality of open data available for modeling on a
national scale. Both physical and stochastic models have been used to model the various wildfire risk
components (for in-depth surveys see [2, 3]). Fire locations have typically been modeled as point
process models [4, 5], fit by maximum likelihood over discretized space-time grids [6]. Logistic
Generalized Additive Models (GAMs) have been used to model seasonal non-linear relationships
among fire occurrence and covariates [7]. Fire duration is usually modeled via survival analysis
techniques [8]; as duration is typically heavy-tailed, the baseline survivor functions are modeled as
Gaussian, Gumbel or logistic distributions [2]. Parametric heavy tailed distributions are often used
for fire size as well (e.g. tapered Pareto [9], Generalized Extreme Value (GEV) distribution [10] and
generalized Pareto distribution with additional environmental features as inputs [11]). Previous work
has generally sought to model each component of wildfire risk separately. More specifically, fire
occurrence was combined with an independent survival model [12, 13] and bivariate extreme value
models were used in marked point process settings to explicitly model dependence between wildfire
risk components [14, 15].
Our contribution in this paper is threefold. First, we seek to provide end-to-end modeling of the
wildfire risk pipeline with an emphasis on both predictive accuracy and uncertainty for each risk
estimate in the pipeline. Our proposed model accounts for fire location, size, duration, and risk
exposure sequentially, so that uncertainty in each step can be propagated to later steps. Second, we
seek to build our models using on the entire continental United States using open data, rather than
limiting our analysis to a specific state or county. Third, we provide open-source code 1 to download,
transform and aggregate open data relevant to wildfire prediction in the continental United States. We
hope this will set an openly available national benchmark for wildfire risk modeling.

1https://github.com/shamindras/backburner.
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2 Data Aggregation Pipeline

Our first goal is to provide open-source code to extract, transform, and load (ETL) publicly available
wildfire-related data in the continental United States to produce a single database containing all
information relevant to wildfires. The first release includes the following data sources: (i)Wildfire
perimeters from both the Monitoring Trends in Burn Severity project (MTBS, [16], 1984–2016)
and Geospatial Multi-Agency Coordination (GeoMAC, [17], 2000–2019) (ii)Weather data from the
National Oceanic and Atmospheric Administration (NOAA), specifically the daily global historical
climatology network and storm events database ([18, 19]) (iii) Wildfire data from the US Forest
Service archive ([20], up to 2015) and (iv) Lightning strikes from the National Lightning Detection
Network (NDLN, [21], 1986–2018). Our code conveniently consolidates all these disparate data
sources into a single open geospatial SQL database.

3 Wildfire Prediction Model

We propose to model wildfire occurrence as a spatiotemporal point process. Each observed wildfire i
is an event (si, ti) comprising the fire’s 2D spatial location si ∈ X ⊂ R2, and ti ∈ T ⊂ R, the time the
fire occurred. Each fire also has additional features, known as marks: the fire’s duration di , fire size zi ,
and the exposure risk of the fire ci (e.g. lives at risk). The point process model has several parts. The
ground process λg(s, t) models the rate of wildfires per unit time per unit space, and varies according
to features of the location, season, weather, and so on [22]. It can be defined as a parametric function
of spatial covariates or as a nonparametric model. The distributions of di , zi , and ci also vary with
these covariates, and by location and time, so they are modeled with conditional densities fD(d | s, t),
fZ (z | s, t, d), and fC(c | d, s, t). The overall model is

λ(s, t, z, d, c) = λg(s, t) fD(d | s, t) fZ (z | s, t, d) fC(c | s, t, d, z), (1)

with the log-likelihood function

`(θ) =

n∑
i=1

log(λ(si, ti, di, zi, ci)) −
∫
T

∫
X

λg(s, t) ds dt,

where θ is the vector of model parameters, i indexes observed fires, and X and T define the space
and time for which fires were observed [23]. The model can be fit using maximum likelihood
[24]. The power of this model is that it can be easily interpreted in various ways and key quantities
can be obtained straightforwardly. For instance, the expected number of fires in a spatial region
S and temporal window T is the integral of the ground process over that spatio-temporal window
E[N(S ×T)] =

∫
S

∫
T
λg(s, t) dt ds, where N is the counting measure. In the same fashion, to calculate

the number of fires expected of particular sizes or costs, the intensity λ(s, t, z, d, c) can be integrated
over these sizes or costs as well. In general, the factorization in Eq. 1 also allows for predictive
inference at different part of the pipeline: calculating statistics of interest for duration can be done by
integrating fD(d | s, t) only over a spatial region and temporal window, hence not requiring the full
pipeline to be run. The key statistical quantities of interest and modeling output at each stage of the
pipeline are summarized in Table 1.

Stage 1
Fire Occurrence

Stage 2
Fire Duration

Stage 3
Fire Size

Stage 4
Risk Exposure

Quantity of Interest λg(x, y, t) fD(d | s, t) fZ (z | s, t, d) fC(c | s, t, d, z)
Modeling Method MLE CDE CDE CDE
Modeling Output E[N(S × T)] Duration Density Size Density Risk Density

Table 1: Proposed model pipeline for wildfire locations and risks

We propose to model the conditional densities at each stage using conditional density estimation
(CDE) techniques. This can be done via fitting suitable parametric family models such as heavy
tailed distributions [9, 10], where the distribution are chosen based on the domain knowledge.
Another approach is to estimate conditional densities nonparametrically, for instance relying on
nonparametric regression method such as nearest neighbor, random forest and kernel density estimate
[25, 26, 27, 28] or by making assumptions on the form of the conditional distribution [29, 30]. The
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key advantage of using conditional densities, rather than simple regression models, is they make
uncertainty quantification in prediction straightforward, as the full conditional distribution is available
for simulation. This also allows to propagate uncertainty through the pipeline in a forward fashion;
for instance, given the spatiotemporal coordinates of a wildfire s, t, one can sample its duration from
fD(d |s, t), then its size from fZ (z |s, t, d) and finally its risk exposure fC(c |s, t, d, z). Repeating this
process multiple times can provide uncertainty over key quantities of interest of a wildfire, at any
stage of the pipeline. As conditional density estimation techniques are negatively affected by small or
skewed training data, we plan to validate the fit at each stage of the pipeline using e.g., probability
integral transforms and highest predictive density regions [31, 25, 30]. We also intend to assess
goodness of fit and validate predictive accuracy at each stage of the model pipeline. Spatiotemporal
point process residual diagnostic techniques are surveyed in detail in [32] including using Voronoi
residual maps [33].
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