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Abstract

The El Niño Southern Oscillation (ENSO) is the dominant mode of variability in
the climate system on seasonal to decadal timescales. With foreknowledge of the
state of ENSO, stakeholders can anticipate and mitigate impacts in climate-sensitive
sectors such as agriculture and energy. Traditionally, ENSO forecasts have been
produced using either computationally intensive physics-based dynamical models
or statistical models that make limiting assumptions, such as linearity between
predictors and predictands. Here we present a deep-learning-based methodology
for forecasting monthly ENSO temperatures at various lead times. While traditional
statistical methods both train and validate on observational data, our method trains
exclusively on physical simulations. With the entire observational record as an
out-of-sample validation set, the method’s skill is comparable to that of operational
dynamical models. The method is also used to identify disagreements among
climate models about the predictability of ENSO in a world with climate change.

1 Introduction

The El Niño-Southern Oscillation (ENSO) is a cycle of warm and cold temperatures in the equa-
torial Pacific Ocean that influences weather patterns around the world. It impacts North American
temperature and precipitation, (Ropelewski and Halpert) the Indian Monsoon (Kumar, Rajagopalan,
and Cane), and hurricanes in the Atlantic (Pielke Jr and Landsea). Thus, it has consequences for
agricultural planning, commodity prices, insurance terms, and energy availability (Yu et al. Anderson
et al. Aryal et al.).

Traditionally, the European Center for Medium-Range Weather Forecasts (ECMWF) runs a physics-
based seasonal forecasting model called SEAS5. With supercomputers, they forecast the Niño-
3.4 index, an area in the tropical Pacific Ocean averaged from 5N–5S and 120–170W (Bamston,
Chelliah, and Goldenberg). Existing machine learning ENSO forecasts have utilized long short-term
memory (LSTM) neural networks (Broni-Bediako et al.) or a combination of autoregressive integrated
moving average models and artificial neural networks (Nooteboom et al.). While these forecasts are
trained exclusively on observations, we train a neural network only on simulations from Coupled
Atmosphere–Ocean General Circulation Models (AOGCMs) and evaluate it on observations. This
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serves as an implicit investigation of the ability of AOGCMs to simulate the climate accurately, and it
allows us to keep the entire observational record as a validation set, ensuring the neural networks’
predictions are robust.

AOGCMs are numerical simulations of atmospheric and ocean processes used to improve understand-
ing of the climate system and its temporal behavior. The scientific community has created historical,
present, and future simulations of the behavior of the climate under different scenarios of greenhouse
gas emissions. By training neural networks on AOGCMs, we present three contributions:

1. Trained only on physical simulations, neural networks offer comparable performance to
operational seasonal forecasting models.

2. To evaluate the interpretability of neural networks, we compare their saliency maps to global
grids showing the R2 value between each grid cell and the subsequent Niño-3.4 index.

3. We investigate the predictability of ENSO in a world with climate change and a world
without climate change.

2 Forecasting El Niño with Deep Learning

2.1 Methodology

We train a neural network that takes as input a 24-month time series of monthly surface temperature
on a global 192 x 96 grid, and it forecasts the Niño-3.4 index at a specified lead time. Our neural
network is a convolutional and recurrent architecture: it encodes the spatial information of each
global surface temperature grid using a 6-layer convolutional neural network, and then feeds the
encoded information into an LSTM to learn from the temporal sequence. (See Appendix 5.1 for a
detailed description of the architecture.)

Based on their accuracy in simulating ENSO (Voldoire et al.), we trained our neural network on
the following AOGCMs (named after the modeling centers that produced them): CNRM-CM5
(800 years), MPI-ESM-LR (1000 years), NorESM1-M (500 years), HadGEM2-ES (500 years) and
GFDL-ESM2G (500 years). To develop a set of ground truth Niño-3.4 targets, we calculate the
Niño-3.4 indices reported in ERA5 (Hersbach), a gridded dataset of historical observations. Due to
SEAS5 data availability, we use the years 1993-2016 as our validation set.

2.2 Results

(a) (b)

Figure 1: (1a) Correlation of ClimateAi method, Ham et. al. method, Ensemble of deep learning
methods, and SEAS5. (1b) Time series comparing ClimateAi Method, Ham et. al. Method, SEAS5,
and Observed Nino3.4 Index

As shown in Figure 1a and 1b, neural networks trained on AOGCMs offer comparable performance
to SEAS5. To show the full potential of deep learning, we include predictions from an ensemble of
our proposed method and Ham et. al’s method (Ham, Kim, and Luo). Ham et. al. recently proposed
a method of training CNNs on AOGCMs; however, their method does not utilize LSTMs and uses an
additional input predictor: ocean heat content. Also, in Figure 1a, we demonstrate that the proposed
method outperforms another other benchmark: training a neural network purely on observations. We
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conclude that neural networks learn better from abundant AOGCM simulations than from limited
historical observations. In appendix section 5.3, we compare the performance of the neural networks
to SEAS5 for extreme values of the Nino3.4 Index.

(a) (b)

Figure 2: (2a) Neural Network Saliency Map Overlaid With Niño-3.4 R2 Values at 3 Month Lead
Time. (2b) Performance of Neural Networks When Forecasting in Pre-Industrial Control and RCP8.5
scenario of MPI, HadGEM, and CNRM AOGCMs.

To investigate the geographic regions of most importance for the networks’ prediction, we employ
saliency maps. Saliency maps are a computer vision interpretability technique that calculate the
gradient of the final prediction with respect to each pixel of an input image; they indicate the most
important pixels to the neural network’s prediction (Simonyan, Vedaldi, and Zisserman). In gridded
climate datasets, each grid cell is analogous to a pixel in an image, so saliency maps can be directly
compared to plots showing the R2 coefficient between each grid cell and the Niño-3.4 index. In
Figure 2a, our neural network’s saliency map (averaged across all members of the validation set)
indicates that it primarily bases its forecast on equatorial temperature in the Pacific Ocean. Its saliency
map aligns with areas with high R2 values, showing that the model primarily relies on the regions that
are strong linear predictors of the Niño-3.4 Index. Still, the neural network also highlights regions
with low R2 in the Pacific and Indian Ocean as important predictors, indicating that the model does
not purely rely on linear relationships to form its predictions.

3 Evaluating El Niño Predictability in a Warmer World

Existing work has explored the trend, magnitude, and variability of ENSO in future climate projections
(Yeh et al.; Ashok and Yamagata; Van Oldenborgh, Philip, and Collins). Leveraging the light
computational expense of our seasonal forecasting model, we investigate the predictability of ENSO
in a warmer world.

We explore the degree to which it is possible to forecast the Niño-3.4 index at in three AOGCMS:
CNRM, HadGEM, and MPI. Each AOGCM has a pre-industrial control run, in which greenhouse
gas emissions stay at their pre-industrial levels, and a Representative Concentration Pathway 8.5
(RCP8.5) scenario, in which greenhouse gas (GHG) emissions increase substantially by 2100. To
ensure an equitable comparison, we train neural networks at lead times of 3, 4 and 5 months on each
scenario of each climate model independently; this accounts for intrinsic AOGCM differences in
responding to GHG emissions. Each neural network is trained on 60 years and evaluated on 30 years
of data. The models trained on RCP8.5 are only trained and validated on years after 2200 when
emissions have stabilized.

As shown in Figure 2b, in the MPI and HadGEM AOGCMs, ENSO is similarly predictable in RCP8.5
and pre-industrial control. However, in CNRM, a warmer world is significantly less predictable
than the corresponding pre-industrial control run. (The time series from which the R2 values are
calculated are included in the Appendix Section 5.2.) We conclude that ENSO predictability is a
point of disagreement among current climate models. When applied to all ensemble members across
all AOGCMs submitted to the Climate Model Intercomparison Project, our method can determine if
there is a consensus in ENSO predictability.

3



4 Discussion

We demonstrate that neural networks trained purely on physical simulations can forecast ENSO with
simular accuracy as SEAS5, the state-of-the-science seasonal forecasting dynamical model. This
implicitly indicates that AOGCMs accurately resolve the behavior of ENSO and that neural networks
learn this behavior embedded across AOGCMs. Finally, ENSO predictability can be a new metric
used to evaluate climate models and to investigate differences between present and future climate.
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5 Appendix

5.1 Architecture Details

The 2D-CNN contains 6 convolution layers with ReLU non-linearity at each layer and one fully
connected layer at the end.

The network details are the following: [Conv2D-> batch normalization->ReLU] * 5 -> [Conv2D ->
ReLU] -> FC. The first convolutional layer uses 10 filters and then the number of filters double in
every layer. Paddings and strides are defined so as to get the desired size reduction.
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The output vector from the fully connected layer feeds into a RNN in sequences of successive months
(here, 24 months). The RNN consists of a many to one architecture and has 2 LSTM layers, with
each of them having 500 hidden units. At the end, the hidden state of the last time step is decoded
to a real value using a fully connected layer, to output the predicted monthly Niño-3.4 sea surface
temperature anomalies.

5.2 Time Series of RCP8.5 and Pre-Industrial Control performance

We include the time series overlaying the deep learning prediction and the target Niño-3.4 index in
the RCP8.5 and pre-industrial control runs of CNRM and MPI.

Figure 3: (Top Left) CNRM pre-industrial control (RMSE:0.481, R2:0.700) (Top Right) CNRM
RCP8.5 (RMSE:0.528, R2:0.230)(Bottom Left) MPI pre-industrial control (RMSE:0.472, R2:0.592).
(Bottom Right) MPI RCP8.5 (RMSE:0.681, R2:0.592).

5.3 Evaluation of Neural Networks at Extreme Values of the ENSO Index

In the figure above, we evaluate the performance of our neural network with SEAS5 and with Ham et.
al.’s neural network at a 6 month lead time. SEAS5 still offers better performance at extreme values
of the Niño-3.4 index, indicating that an ensemble of neural networks still has room for improvement.
We believe that this area offers the next challenge for improving the performance of neural networks.

5


	Introduction
	Forecasting El Niño with Deep Learning
	Methodology
	Results

	Evaluating El Niño Predictability in a Warmer World
	Discussion
	Appendix
	Architecture Details
	Time Series of RCP8.5 and Pre-Industrial Control performance
	Evaluation of Neural Networks at Extreme Values of the ENSO Index


