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Abstract

Flooding is a destructive and dangerous hazard
and climate change appears to be increasing the
frequency of catastrophic flooding events around
the world. Physics-based flood models are costly
to calibrate and are rarely generalizable across dif-
ferent river basins, as model outputs are sensitive
to site-specific parameters and human-regulated
infrastructure. Statistical models trained primar-
ily from remotely-sensed Earth observation data
could reduce the need for extensive in-situ mea-
surements. In this work, we develop generaliz-
able, multi-basin models of river flooding suscep-
tibility using geographically-distributed data from
the USGS stream gauge network. Machine learn-
ing models are trained in a supervised framework
to predict two measures of flood susceptibility
from a mix of river basin attributes, impervious
surface cover information derived from satellite
imagery, and historical records of rainfall and
stream height. We report prediction performance
of multiple models using precision-recall curves,
and compare with performance of naive baselines.
This work on multi-basin flood prediction rep-
resents a step in the direction of making flood
prediction accessible to all at-risk communities.

1. Introduction
Among natural disasters, flooding is one of the most de-
structive, dangerous, and common hazards. In the U.S.,
75% of all Presidential disaster declarations are associated
with flooding, and floods cause an average of $6 billion in
property damage per year [13, 18]. Additionally, climate
change appears to be exacerbating the incidence of catas-
trophic flooding events [16]. If we can improve the access to
flood prediction systems, lives could be saved and damage
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lessened. In this work, we apply machine learning to the
problem of forecasting river flooding hazards.

The physics-based models that the National Oceanic and
Atmospheric Administration (NOAA) uses to predict river
levels and issue official flood warnings are time-consuming
and costly to use. These models rely on field observations
and calibration to small geographic areas and consequently
their outputs are not generalizable across different river
basins. If flood prediction can be done without reliance on
these expensive in-situ measurements it could reduce costs
for existing flood prediction systems as well as expand flood
prediction efforts to areas that could not previously afford
river gauging infrastructure.

Existing work using machine learning methods to predict
flood susceptibility has also been constrained to small geo-
graphic areas. Khosravi et al. [9] predict flood susceptibility
in a single watershed, and Tayfur et al. [15] predict a hydro-
graph for a single stretch of river. Assem et al. [1] predict
river levels at 3 stations in a single catchment. Work by
Kratzert et al. [10] on estimating runoff as a function of rain-
fall using LSTMs suggests that machine learning models are
able to generalize across many catchments in a manner that
traditional models cannot, providing promising evidence
that statistical flood susceptibility models need not be lim-
ited to small geographic areas.

The work presented here explores prediction performance
of generalizable, multi-basin models on two measures of
flood susceptibility using data from six U.S. states across
more than six river basins: South Dakota, Nebraska, South
Carolina, Virginia, New York, and New Jersey. The models
trained in this work rely on USGS stream gauge data for
ground truth and as inputs for a subset of our experiments,
but also incorporates remotely-sensed data and is a step
in the direction of a flood prediction model that is less
dependent on in-situ measurements.

2. Data
To predict flood susceptibility, we rely on information
sourced from a mix of satellite-derived and in-situ data. The
USGS stream gauge network provides river height measure-
ments at 15 minute intervals [17]. Data collected between
2009 and 2019 was used. Flood thresholds at stream gauge
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locations are determined by NOAA for four separate flood
categories [12]. The ‘minor flood’ threshold was used to
binarize the USGS stream gauge readings for experiments
that involve predicting flood occurrence. This resulted in a
dataset where 5.5% of the data points indicated that flooding
occurred.

Records of time to peak river levels after precipitation events
were obtained from the Flooded Locations & Simulated Hy-
drographs (FLASH) Project [5]. The time-to-peak data
was split into 4 bins with roughly equal frequency, a time
to peak of less than 3.12 hours, between 3.12 and 7.44
hours, between 7.44 and 18 hours, and greater than 18 hours,
and assigned categorical labels indicating bin number. For
historical rainfall data, daily total precipitation from the
PRISM climate data set is used [14]. At each gauge location,
river basin attributes affecting regional surface runoff and
groundwater drainage are obtained from the EPA StreamCat
dataset [8]. Average upstream impervious surface cover
at gauge locations is calculated from the satellite-derived
National Land Cover Dataset (NLCD) [11]. We include
elevation at each river gauge location by overlaying Shuttle
Radar Topography Mission (SRTM) 30-meter resolution
data [19], and include a characteristic length parameter de-
scribing the scaling relationship between channel slope and
drainage area [6]. All input data including rainfall, basin
characteristics, elevation information, and impervious sur-
face cover is normalized by feature to fall approximately in
the range [0, 1] using the training set statistics. Each stream
gauge had up to 10 years of data at 15 minute intervals
which was summarized into monthly statistics. The entire
record of each such location was randomly assigned to ei-
ther the training set, validation set, or the test set to achieve
a 60-20-20 training, validation, and test split.

3. Methodology
We train statistical models to predict two separate measures
of flood susceptibility: (1) binary flood occurrence at gauge
locations within a given month (approx. 50,000 gauge-
months), and (2) time to peak river level after precipitation
events (approx. 3000 events). These two measures of flood
susceptibility are indicated on a plot of river height over time
for a single location in Figure 1, where flood occurrence
indicator is triggered once the river height crosses above a
fixed flood threshold. Taken together, these two prediction
targets provide critical information for both long-term and
regional-scale flood planning, and short-term planning for
localized flash flooding following extreme rainfall events.
In Section 4, we report results for a single time-to-peak bin
(greater than 18 hours from start of precipitation to peak
river level).

A key objective of this work is to explore the relative impor-
tance of different features for making accurate predictions.

Figure 1. River height for a single stream gauge location in the
period during and following a precipitation event.

In particular, how critical are recent historical records of
river height and accurate rainfall forecasts for predicting
future flood susceptibility? These questions can help us un-
derstand the relative feasibility of statistical flood prediction
for an ungauged river basin and for an area where accurate
rainfall forecasts aren’t available. To answer these ques-
tions, we construct three experiments that include different
groups of features for the statistical models. Experiment
1 addresses the problem of predicting flood susceptibility
in ungauged locations along a river network. For these ex-
periments, no information on prior river levels is provided
as input the predictive models. Experiment 2 assumes a
well-gauged river basin, and forecasts flood susceptibility
using historical data on river height at prediction locations.
Finally, Experiment 3 provides an informative upper bound
on prediction performance in the presence of accurate rain-
fall forecasts by including true rainfall observations as an
input to predictive models.

Three classification models are trained in a supervised frame-
work to predict both measures of flood susceptibility: a
random forest classifier [2], gradient boosted decision trees
(GBDT) [3], and a multilayer perceptron (MLP) with ReLU
activations [7]. For all models considered, hyper-parameters
are tuned using a held-out validation set and models are
evaluated on a held-out test set.

4. Results
The results of all three experiments are shown with
precision-recall (PR) curves in Figure 2. PR curves allow
a decision-maker to choose where to threshold the proba-
bility produced by a classifier in order to produce a desired
trade-off between false positives (predicted floods that do
not occur) and false negatives (actual floods that were not
predicted). The machine learning models are compared to
a random baseline classifier that would assign a random
probability of flooding to each example, giving a PR curve
that is a horizontal line at a precision corresponding to the
fraction of positive examples in the test data.



Machine Learning for Generalizable Prediction of Flood Susceptibility

Experiment 1: Prediction at ungauged locations
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Experiment 2: Prediction at gauged locations
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Experiment 3: Prediction with rainfall oracle
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Figure 2. Precision and recall curves for four model classes pre-
dicting monthly flood occurrence (left) and time to peak river level
(right). Results are reported for three experiments: prediction at
ungauged locations (top), prediction at gauged locations (middle),
and prediction at gauged locations with a rainfall oracle (bottom).
A gradient boosted decision tree (GBDT), random forest classifier,
and multi-layer perception are compared to a random baseline.

Figure 2 shows that all models considered outperform the
random baseline. Across all three gauge-month experiments,
the GBDT is the best classifier in terms of Average Precision
(AP). This is likely due to the gradient boosting on difficult-
to-classify examples, which makes the GBDT well-suited
for an imbalanced data set of rare flooding events. For
classifying time-to-peak bins, all models (excluding the
random baseline) demonstrate roughly similar performance.
This may be because the time-to-peak task uses a more
balanced dataset than the gauge-month experiments – 25%
positive class labels compared to 5.5% positive class labels.

We also compare predictive performance to the operational
flood predictions released by NOAA and collected in the
Iowa Environmental Mesonet (IEM) database [4]. We eval-
uate approximately 4,100 gauge-month predictions by the
Northeast River Forecast Center across 54 gauging locations

and aggregate three-day-lookahead river level forecasts to
produce monthly flood occurrence statistics. We find that
NOAA’s forecasts have precision of 0.5 and recall of 0.245.
This is not directly comparable to our PR curves as a dif-
ferent subset of the data is evaluated, but if this trend is
consistent, our best models represents a more than twofold
improvement in the proportion of monthly flood events that
are predicted ahead of time.

5. Conclusions & Future Work
These preliminary results provide promising evidence that
multi-basin flood prediction with statistical models is pos-
sible and is deserving of additional research despite the
fact that such an approach has not yet been used in prior
work to the best of our knowledge. We believe that the
incorporation of additional remotely-sensed data streams
and more sophisticated machine learning techniques has
the potential to produce even higher quality multi-basin
flood prediction models. Further, while this work focuses
on six geographically-distributed states, adding data from
stream gauge locations throughout the conterminous U.S.
can potentially improve generalizability of the trained mod-
els. In summary, our work provides a proof-of-concept
that multi-basin flood prediction using statistical models
and remotely-sensed data has considerable value, and can
overcome many of the shortcomings of physics-based flood
prediction models such as reliance on time-consuming cal-
ibration to small geographic areas. Regional-scale flood
susceptibility models increase the accessibility of accurate
and cost-effective disaster planning for populations at risk
of experiencing flooding anywhere in the world.

Future work includes training and testing our model us-
ing data from the entire U.S., and comparing this to flood
predictions from NOAA for the entire U.S. We also plan
to closely analyze the geographic areas and climatological
and topographical conditions where our predictions per-
form significantly differently from NOAA’s predictions. A
flood prediction model that is fast to deploy over large geo-
graphic areas and trained using remotely-sensed data would
be extremely valuable for helping people around the globe
prepare for flooding events, and would only become more
useful as climate change increases the frequency and impact
of severe flooding events.
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