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Abstract

[ The US Environmental Protection Agency identifies that urban heat islands can
negatively impact a community’s environment and quality of life. Using low cost
urban sensing networks, it is possible to measure the impacts of mitigation strate-
gies at a fine-grained scale, informing context-aware policies and infrastructure
design. However, fine-grained city-scale data analysis is complicated by tedious
data cleaning including removing outliers and imputing missing data. To address
the challenge of data cleaning, this article introduces a robust low-rank tensor
factorization method to automatically correct anomalies and impute missing entries
for high-dimensional urban environmental datasets. We validate the method on
a synthetically degraded National Oceanic and Atmospheric Administration tem-
perature dataset, with a recovery error of 4%, and apply it to the Array of Things
city-scale sensor network in Chicago, IL.

1 Introduction

Urban heat islands impact human health and cause socioeconomic disturbances [1, 2]. More than
8,000 premature deaths were attributed to elevated temperatures and prolonged heat waves from
1979 to 1999 in the US [[1]. Other issues such as excessive energy consumption also arise [3]. As
a consequence, a number of mitigation strategies have been proposed [} 14, 5, 16]]. To quantify the
effects of the built environment on micro climate and other environmental impacts, many urban-scale
environmental sensing initiatives are being developed [7, 181910} [11]. These projects measure block-
by-block micro-climate quantities to inform better green infrastructure investment, transportation
planning and energy-saving designs. However, low-cost environmental sensors that facilitate dense
instrumentation of urban communities are prone to errors, outliers, and missing data. The data
quality issue is a concern for many sensor networks [[12, 13} [14]], and yet high quality data is
essential to construct an accurate context [12]]. Current approaches to clean the datasets prior to
interpretation are often limited in functionality for which anomalies or missing data are independently
addressed [15. 16} 17]).

The main contribution of this work is to introduce a robust tensor factorization algorithm to automat-
ically correct errors and impute missing data common to large distributed urban sensor networks
(Section [Z). We show that the proposed method is able to automatically correct outliers and impute
missing data while preserving the normal variations of the dataset.

Two experiments (Section [3)) demonstrate the approach. The first experiment begins with a com-
plete (no missing data) National Oceanic and Atmospheric Administration (NOAA) temperature
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dataset [[18]], which is artificially degraded by injecting known outliers and also by removing some
entries to simulate missing data. We demonstrate that the proposed tensor factorization approach cor-
rectly identifies the outliers and recovers accurate values for the missing data. The second experiment
applies the method to the raw and incomplete temperature data from the Array of Things (AoT) urban
sensing platform in Chicago, IL [19]]. The recovered temperature data is validated by comparing to
nearby NOAA readings when applicable, and the resulting clean data is available [20].

2 Tensor factorization

We briefly summarize our tensor factorization approach to remove outliers and impute missing data.
We organize the raw data in a multi-dimensional array known as a tensor, which is a higher order
generalization of a matrix. E.g., a third order tensor storing temperature data might arrange the
timeseries data such that the first mode corresponds to each sensor, the second mode to each hour in a
24-hour period, and the third mode to each 24-hour period in the dataset.

Tensor factorization approaches [21} 22] exploit the fact that many large, noisy, and incomplete
datasets actually have low intrinsic dimensionality. Assuming outliers appear sparsely in the raw
data, we can reconstruct the underlying true complete data. Letting B € Rf1*/2X--*XIN denote the
raw data tensor, our approach recovers a low dimensional tensor X’ (measured by the Tucker rank of
the tensor [23]]) containing the clean complete data, and a sparse (i.e., mostly zero entries) outlier
tensor &, such that B = X + £ on the entries of B that are observed.

Recovering a low rank X" and sparse outlier £ from a corrupt B can be posed as a convex program:
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s.t. B=X+E&+ O,and Og = 0.

The objective function in problem () balances the tensor rank of X', with the sparsity of the outliers
& via A, which is set according to [24, 25]. The term ) _, [|X;)||« is a convex relaxation of the tensor
rank of X', where X ;) is the mode-i matrix unfolding of X', and || - ||, denotes the nuclear norm [22].
The I 1 norm || - ||2,1 imposes a specific sparsity pattern on the outlier tensor £, namely encouraging
outliers to persist across one of the orders of the tensor [26]]. For example, it can be used to model
the observation that some sensors degrade and produce faulty data for extended periods of time. A
compensation tensor O, which is zero for entries in the observation set 2, and free otherwise, is used
to handle missing entries. Problem (T)) is solved by singular value thresholding [27 25]] based on the
alternating direction method of multipliers (ADMM) framework [20), 22].

3 Experiments

We briefly summarize two experiments in which we apply the proposed tensor factorization method
to large temperature datasets. The first experiment is a complete NOAA [18] temperature dataset
that we synthetically degrade, so that the recovery relative error can be computed. In the second
experiment, we apply the method to Array of Things temperature data which contains missing data
and outliers. We assess the quality of the recovery by comparing the correlation of AoT data with
NOAA sensors when they are in close proximity.

Experiment 1. Synthetically degraded NOAA data. We apply tensor factorization on a complete
NOAA dataset [18]]. We use temperature data from April to September, 2018 recorded from stationary,
high-end climate sensors located at 14 USCRN monitoring sites [28] in the US Midwest. The
accessed 14 NOAA sensors record data hourly for 24 hours a day, for 183 days, which is arranged as
X € R14x24%183 The raw NOAA data is used as the true temperature in this experiment, denoted
Xlrue, Which is to be estimated from a degraded corrupted dataset B.

To test the factorization method, we generate a synthetically corrupted dataset B from X}, that has
missing data and erroneous values. The volume and structure of the outliers in B is inspired by the
patterns observed in the AoT dataset used in Experiment 2 below. We degrade the data by randomly
removing blocks of data ranging between 8-16 days, accounting for a total missing data rate of 15%.
We randomly modify 2% of the entries to create outlier readings, also clustered in blocks of time.



Table 1: Performance. B denotes raw data, and X is the recovered data. RE reported for the NOAA
experiment (X, is known); the correlation coefficient r between AoT and a nearby NOAA sensor.

NOAA experiment Array of Things experiment
REuncorrupled REoutliers REmissing REmean Tpresent T'missing
B 0 114% - 15.84% 0.883 -
X 3.26% 6.87% 5.82% 3.85% 0.888 0.930
3PM Aug 23 3PM Aug 24 3PM Aug 25 3PM Aug 26 3PM Aug 27 3PM Aug 28
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Figure 1: Voronoi heat maps (°C) at 3PM from Aug. 23 to 28, 2018 produced by raw (top; missing
data in black) and recovered (bottom) air temperature data. Each dot marks an active AoT unit.

Given B, we solve problem (T) with A = 0.345, where the decision variable X at optimality is the
recovered dataset X'. We compare the quality of the recovered dataset X to the true dataset Xjue by
computing the relative error, RE = ||Xyye — X||p/|| Xiwwe|| 7> Where || - || is the tensor Frobenius

norm. The results are summarized in Table|1| The relative error of X computed on all entries of the
dataset is reduced from 15.84% in the corrupted dataset 53 to 3.85% in the recovered data. Restricted
to only the missing data entries, the relative error of X is 5.82%, demonstrating the method is able to
accurately impute missing data even when sensors report no data for long periods of time. Similarly,
the relative error on the entries that are identified as outliers by the method (i.e., the nonzero entries
of &) has a low error of 6.87%, down from 114% on the same entries in the corrupt data tensor 3. We
note that the zero relative error of B on the uncorrupted entries is an artifact of the fact that B was
created directly from AXj... The precision and recall of the outlier entries are both 1.

Experiment 2. Array of Things data. The method is next applied to Array of Things, a dense urban
sensor network in Chicago [7] that collects real-time data on urban environment, infrastructure, and
activity for research and public use. We construct an AoT temperature tensor as X € R345%24x183
representing 345 temperature sensors aggregated hourly, for 24 hours a day and for 183 days, matching
the period of the NOAA data. Problem (T)) is solved with A = 0.345. Approximately 15% of the AoT
data is missing in this period, and the outlier rate identified by our algorithm is about 1%.

Due to the lack of a ground truth dataset, each AoT sensor is quantitatively compared to its closest
NOAA sensor. Because the temperature field is spatially varying, we use the Pearson correlation
coefficient to quantify the agreement between recovered AoT temperature readings and the nearest
NOAA sensor. Figure[I]shows temperature variation in Chicago near a hot period on Aug 26-27 in
the raw and recovered dataset. The results (Table[T)) show a high correlation on the AoT data that is
present (7present) before and after recovery. The correlation coefficient of the imputed missing data is
Tmissing = 0.930, indicating the method successfully imputes the missing temperature data.

Discussion & Conclusion. We proposed a method to automatically clean environmental data on
two temperature datasets using tensor factorization. Our next steps are to create improved validation
datasets for AoT to more rigorously quantify the quality of the recovery. We are also interested to
extend the approach to accommodate other environmental sensors co-located on the AoT platform.
Ultimately the cleaned data will assist its use by city planners and urban scientists interested in
neighborhood-specific heat mitigation strategies to reduce adverse impacts [29].
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