PREDICTING ICE FLOW DYNAMICS USING MACHINE LEARNING

An Important Problem

Yimeng Min, 5. Karthik Mukkavilli and Yoshua -

Mila - Quebec Al Institute, Montreal, Canada
University de Montreal, Montreal, Canada

Labels

Bengio

Though machine learning has achieved notable success in modeling sequential and spa-
tial data for speech recognition and in computer vision, applications to remote sensing
and climate science problems are seldom considered. In this paper, we demonstrate
techniques from unsupervised learning of future video frame prediction, to increase
the accuracy of ice flow tracking in multi-spectral satellite images. As the volume
of cryosphere data increases in coming years, this is an interesting and important
opportunity for machine learning to address a global challenge for climate change,
risk management from floods, and conserving freshwater resources. Future frame pre-
diction of ice melt and tracking the optical flow of ice dynamics presents modeling
difficulties, due to uncertainties in global temperature increase, changing precipita-
tion patterns, occlusion from cloud cover, rapid melting and glacier retreat due to
black carbon aerosol deposition, from wildfires or human fossil emissions. We show
machine learning method helps improve the accuracy of tracking the optical flow of
ice dynamics compared to existing methods in climate science.

We use a stochastic video generation with prior for prediction. The prior network
observes frames x1.4 1 and output z1,,(x1:¢—1) and o,,(x1.4—1) of a normal distribution
and is trained with by maxing:
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Where py, q4 and p,;, are generated from convolutional LSTM. g4 and py, denote the
normal distribution draw from x; and x; 1 and pp is generated from encoding the
X;_1 together with the z;. Subscene X; is generated from a decoder with a deep
convolutional GAN architecture a by sampling on a prior z; from the latent space
drawing from the previous subscenes combined with the last subscene x;_1. After
decoding, the predict subscene is passed back to the input of the prediction model
and the prior. The latent space z; is draw from p,(z¢[x1.4—1). The details of the
model, also refered as stochastic video generation can be found in [1].

The images are denoted as I where ¢ is from 1 to 12 and the frames(subscenes) in
each image are 7] € RIZ8X128 wherei € {1...12} and j € {1...1525}. For finding the

next subscene, or chip, that matches the .Clﬁfg_l best, we compare the x;g_l to a range of
possible regions by calculating the correlation between two chips, the equation writes
as:
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where 1 and s are the two images and p is the mean value.

Cl(r,s) =

Previous results also show applying high pass filter on both sides of the pairs can be a feasible

solution to increase the correlation at certain areas|3, 2|.
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Fig. 2: The subscenes in our dataset, frame 2 and frame 7 are contaminated by the aerosol

Experiment Results and Discussion

Persistence(Last frame) Hi-pass Filter Machine learning

Correlation Mean 0.237 0.201 0.362
Low <03 0.699 0.598 0.393
Medium 0.3~0.7 0.271 0.337 0.557
High > 0.7 0.0300 0.0651 0.0504

Fig. 3: Results of three models.

We train our model with z € R™® and 2 LSTM layers, each layer has 128 units. By conditioning
on the past eight subscenes, the results of our model on different types of subscenes are shown

in Figure 5 and 4.
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Fig. 4: The correlation map. a) persistence model(correlation between tq and t5); b) high frequency model (correlation between filter
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Fig. 5: Subscenes generated with different models, the first three columns: the past three subscenes; the fourth column:
machine learning predicted next subscene; fifth column: high pass of t(; sixth column: the ground truth; last column:

high pass of ground truth.

Remarks

Our model can also be improved if more physical and environmental parameters
are introduced into the model, for example, the wind speed and the aerosol optical
depth components in the atmosphere. The first parameter provides a trend for the
ice flow movement and the second parameter gives us a confidence factor about the
satellite images’ quality, dropout to particular frames can be applied it the aerosol
optical depth rises over a threshold. Furthermore, black carbon aerosols were found
to accelerate ice loss and glacier retreat in the Himalayas and Arctic from both
wildfire soot deposition and fossil fuel emissions.
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