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Abstract

Urban canopy cover is important to mitigate the impact of climate change. Yet,
existing quantification of urban greenery is either manual and not scalable, or use
traditional computer vision methods that are inaccurate. We train deep convolu-
tional neural networks (DCNNSs) on datasets used for self-driving cars to estimate
urban greenery instead, and find that our semantic segmentation and direct end-to-
end estimation method are more accurate and scalable, reducing mean absolute
error of estimating the Green View Index (GVI) metric from 10.1% to 4.67%. With
the revised DCNN methods, the Treepedia project was able to scale and analyze
canopy cover in 22 cities internationally, sparking interest and action in public
policy and research fields.

1 Introduction

Urban canopy cover is generally acknowledged as an effective way of mitigating the impact of
increasing daytime summer temperatures [ 1, 2] that have recently reached record highs internationally
[3, 4]. Physical models show that urban trees can significantly reduce the diurnal temperature range
[5], while empirical studies demonstrate that urban canopy cover have reduced peak summer air
temperatures by up to 2.8°C, 1.5°C, 2.0 °C, and 2.7 °C in Campinas (Brazil), Singapore, Shanghai
(China), and Freiburg (Germany) respectively [6-9]. Existing studies have established a direct
relationship between high peak summer temperatures and critical health outcomes, such as hospital
admissions [10, 11], deaths [12-14], respiratory diseases and cardiovascular health [15, 16]. High
temperatures can also significantly depress the economic growth of developing [17] and developed
countries [18] by decreasing labor productivity and supply [19], and increasing political instability
[17,20].

Besides decreasing air temperature in cities, benefits of trees and canopy cover in urban areas also
include removal of air pollution [21], increased perceived neighborhood safety [22], and better visual
and aesthetic appeal for residents [23, 24].

Challenges of quantifying canopy cover: Current methods to measure existing urban canopy cover
remain inadequate. Traditional methods rely on either overhead imagery or in-person fieldwork.
High resolution overhead images are often costly to obtain, hence limiting most analysis to coarse
resolutions [25, 26]. Overhead imagery also cannot represent the street-level and resident perspectives
of canopy cover [27]. In-person fieldwork requires significant man-hours to cover large urban areas
[28].

First proposed by Yang et al. [27] and later used by Li et al. [29], the Green View Index (GVI)
measures the street-level urban canopy cover by averaging percentage of canopy cover on a pixel-
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level in street level images. Existing methods [29, 30] that calculate GVI primarily relies on the
original method of color thresholding and clustering to filter for possibly misidentified green specks.
The GVI metric has proven to be applicable to other sources of street-level imagery, including Tencent
Street View [31, 32] and Baidu Street View [30], and also resulted in findings of relationships between
the prevalence of urban greenery to neighborhood wealth [33], property prices [34], cycling and
walking behaviors [35]. These subsequently discovered relationships underline the value of accurate
analysis of urban canopy cover at large scales. Conversely, insufficient quantification of urban trees
will decrease the effectiveness and fairness of publicly-funded urban greenery efforts.

As demonstrated in Figure 3, existing "threshold and cluster" methods are prone to false positive
detection of green objects that are not considered as vertical vegetation, or false negative detection
of non-green parts of vertical vegetation such as branches and yellow leaves. Existing methods
also validate their accuracy by calculating the Pearson’s correlation coefficient between manually
labeled and calculated GVIs [29-32]. The Pearson’s correlation coefficient measures the strength
of co-movements between manually labeled and calculated GVI values, but do not provide a direct
measurement of difference between manually labeled and calculated GVI values and also do not
capture the accuracy of located pixels of vertical vegetation [36].

2 Dataset and Methods

Dataset: We choose Cambridge (USA), Johannesburg (South Africa), Oslo (Norway), Sao Paulo
(Brazil), and Singapore (Singapore) as cities included in our training and test sets. From each of the 5
cities, we randomly select 100 available Google Street View (GSV) images along street networks to
form a training-validation-test set. We then divide the 500 image dataset into a 100 image test set,
320 image training set and a 80 image validation set. We produce manual labels by carefully tracing
all vertical vegetation in the images for all 500 images.

We augment our model training by first using the Cityscapes dataset to train our DCNN model.
Designed with the use case of autonomous driving in mind, the finely labelled subset of the Cityscapes
dataset contains over 5000 images taken from vehicle-mounted cameras placed in vehicles and
sampled across numerous German cities [37]. We convert the Cityscapes dataset by collapsing the
original multi-class labels into binary labels for vegetation and non-vegetation. By first training our
models on the larger Cityscapes dataset, we increase our training dataset with the aim of increasing
our model performance.

Metrics: In addition to Pearson’s correlation coefficient, we propose two evaluation metrics to
compare tree cover estimation: mean Intersection-over-Union (mean IoU) for measuring the accuracy
of the location of labelled vegetation labels, and Mean Absolute Error (MAE) for measuring the
accuracy in estimating overall GVL.

DCNN semantic segmentation: We adopt Zhao. et al’s [38] Pyramid Scene Parsing Network
(PSPNet)’s architecture to train a DCNN to segment vertical vegetation pixel labels. We first use
pre-trained weights from the original PSPNet trained on the original Cityscapes datasets with its 19
class labels. We then pre-train the network again on the aforementioned transformed Cityscapes
dataset with binary labels that classify vertical vegetation. Finally, we train the network on the small
labelled GSV dataset itself. We show the qualitative results of the DCNN segmentation model in
Figure 1.

DCNN end-to-end learning: We directly estimate GVI with a DCNN model. To conduct end-to-end
direct learning of a single GVI value for each image, we adapt He et al’s [39] deep residual network
(ResNet) architecture. We first initialize the network with weights that have been pretrained on the
ImageNet dataset. We then pre-train the modified ResNet with the transformed Cityscapes dataset
and associated true GVI labels, before training on the small labelled GSV dataset.

The lack of an intermediate image segmentation mask makes it difficult to confirm or communicate
the features that the DCNN end-to-end model has learned in order to estimate GVI. Selvaraju et al
[40] developed Gradient Class Activation Map (Grad-CAM) in order to produce visual explanations
for learned features in convolutional layers. We apply Grad-CAM to our DCNN end-to-end model to
understand whether our model has learned generalizable features. The qualitative results of applying
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Grad-CAM to our trained DCNN end-to-end model in Figure 1. We provide more examples of
Grad-CAM applied to our trained DCNN end-to-end model in Figure 5.

Figure 1: Top: Classification of vertical vegetation by DCNN semantic segmentation model. Lighter
masked areas are classified as vertical vegetation. Bottom: Grad-CAM results applied on the trained
DCNN end-to-end model. Areas closer to red have a more positive contribution to a higher prediction
of GVI than the contribution of areas closer to blue.

3 Results and Discussion

Model Mean Mean Pearson’s 5%-95% of Running Time
IoU  Absolute Correlation GVI Estimation for 10000
(%)  Error (%) Coefficient Error (%) images (seconds)
Li et al. [29] "threshold | 44.7 10.1 0.708 -26.6, 18.7 3665
and cluster”
DCNN semantic 61.3 7.83 0.830 -20.0, 12,37 2064
segmentation
DCNN end-to-end NA 4.67 0.939 -10.9,7.97 38.9

Table 1: Accuracy and processing speedcomparison between models. DCNN end-to-end model
does not provide an intermediate image segmentation, hence mean IoU metrics are not computed.

DCNN models perform better than the "threshold and cluster" method across the original Pearson’s
correlation coefficient and metrics proposed by this paper. Furthermore, we show that the GVI
estimation error 5%-95% bounds are substantially narrower using DCNN models. The DCNN
end-to-end model also allows for efficient quantification of GVI. To put this in perspective, the
DCNN end-to-end model can process 1 million Google Street View images required to analyze
urban greenery in a large city like London in an hour worth’s of running time on a single benchmark
machine, whereas the "threshold and cluster” evaluated will require around 4 days. The code and
specialized Google Street View dataset are provided online* for reproducibility and for collaborating
public sector agencies to implement.

These improvements in scalability and accuracy of quantifying urban canopy cover already have
began to influence public greening policies. With this revised methodology, the Treepedia project®
quantified urban canopy cover across 22 cities internationally. Besides widespread and global news
coverage[41-44], the impact of Treepedia project is attested to by public attention from policymakers
from Singapore [45], Paris [42], the US Government’s Climate Resilience Toolkit [46] and the World
Economic Forum [47].

3Processing speed comparisons were were conducted on a system equipped with an Intel i7-7700K processor,
one NVIDIA GTX 1080Ti GPU, and 32GB of memory

*https://github.com/billcai/treepedia_dl_public
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Appendix: Treepedia visualization

London

Figure 2: The Treepedia project conducted large-scale analysis of urban greenery across 22 cities.
Top: Visualization of large-scale quantification of urban greenery in Boston, Bottom: Visualization
of large-scale quantification of urban greenery in London

Appendix: Common errors of ''threshold and cluster' method

Figure 3: Misclassification of vertical vegetation in test images using "threshold and cluster" method’.
Lighter masked areas are classified as vertical vegetation.



Appendix: Dataset visualization

Figure 4: Top: GSV image in Singapore and Sao Paulo, with their associated vegetation labels.
Bottom: Two sample images from Cityscapes dataset and their associated vegetation labels

Appendix: Grad-CAM visualizations




Figure 5: Results from applying Grad-CAM on our trained DCNN end-to-end modele to understand
features learned in the last convolutional layer. 2 images from Cambridge, Johannesburg, Oslo, Sao
Paulo, and Singapore are shown in order. Areas closer to red have a more positive contribution to a
higher prediction of GVI than the contribution of areas closer to blue.
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