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Abstract

Energy use in buildings account for approximately
half of global electricity consumption and a signif-
icant amount of C'O5 emissions. The occupants
of a building typically lack the independent moti-
vation necessary to optimize their energy usage.
In this paper, we propose a novel energy game-
theoretic framework for smart building which in-
corporates human-in-the-loop modeling by cre-
ating an interface to allow interaction with occu-
pants and potentially incentivize energy efficient
behavior. We present open-sourced dataset and
benchmarked results for forecasting of energy re-
source usage patterns by leveraging classical ma-
chine learning and deep learning methods includ-
ing deep bi-directional recurrent neural networks.
Finally, we use graphical lasso to demonstrate
the explainable nature on human decision making
towards energy usage inherent in the dataset.

1. Introduction and Related Work

Buildings, both residential and commercial, account for
more than 50% of global electricity consumption and are
also responsible for 40% of worldwide C'O2 emissions (Al-
louhi et al., 2015). In efforts to improve energy efficiency in
buildings, researchers and industry leaders have attempted
to implement control and automation approaches alongside
techniques like incentive design and price adjustment to
more effectively regulate the energy usage (Aswani & Tom-
lin, 2012; Ratliff et al., 2014; Liu et al., 2019; Zou et al.,
2019b). But, the occupants of a building typically lack the
independent motivation necessary to optimize their energy
usage and play a key role in the control of smart building
infrastructure (Konstantakopoulos, 2018). So, there is a
need for scalable and robust frameworks that can efficiently
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coordinate and control building energy resource usage in
the presence of confounding dynamics such as human be-
havior. We present an energy game-theoretic framework
aimed at incentivizing occupants to modify their behavior
in a competitive game setting so that the overall energy
consumption in the building is reduced. Such frameworks
have been successful in many different areas such as trans-
portation (Qin et al., 2017), medical industry (Bestick et al.,
2013) etc. Our framework can also be integrated with the
electricity grid (Figure 1) to facilitate the adoption of more
dynamic protocols for demand response (Shariatzadeh et al.,
2015). We also benchmark the results for forecasting of
energy resource usage patterns by leveraging classical ma-
chine learning and deep learning methods. To make sure the
data captures explainable human decision making behavior
for energy usage, we perform feature correlation study using
graphical lasso.

2. Design of Energy Social Game
2.1. Energy Social Game Experiment

In this section, we introduce the design and implementation
of a large-scale networked energy game-theoretic frame-
work through the utilization of cutting-edge Internet of
Things (IoT) sensors, implemented with participation of
dorm room occupants at an university residential housing.

The back-end of our game-theoretic framework included an
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Figure 1. Interplay between electric grid and proposed framework
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array of IoT sensors and a structure to assign points to the
players based on their performance in the game. In each
dorm room, we installed sensors which leveraged several in-
door metrics like indoor illuminance, humidity, temperature,
and vibrations to capture the room’s energy resource (ceil-
ing light, desk light and ceiling fan) usage, with a sampling
interval of up to one minute. The players were rewarded
with points based on how energy efficient their daily usage
is in comparison to their peers and their usage before the
social game was deployed. The baseline past usage data
was gathered by monitoring occupant energy usage for ap-
proximately one month before the introduction of the game.
We employed a lottery mechanism consisting of gift cards
to incentivize occupants, where the probability of winning
was proportional to the players points in the game, given by:
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where p¢ is the points earned and u¢ is the usage on day
d for resource i. b; is the resource’s baseline and s; is a
points booster for inflating the points as a process of framing
(Tversky & Kahneman, 1981). This process of framing is
routinely used in rewards programs for credit cards among
many other point-based programs. We use a discrete choice
model as a core abstraction for describing occupant actions
related to their dorm room resources (Konstantakopoulos
et al., 2019; 2018; 2016; 2017).

The front-end of our framework included a web portal (Fig-
ure 2) as the graphical user interface to report the occupants
about real-time status of the devices, their accumulated
daily usage and the % of allowed baseline being used, by
hovering above the utilization bars. In order to boost par-
ticipation, we introduced a randomly appearing coin with
the purpose of incentivizing occupants and reminding them
to view their usage and optimize it. In order to have impact
by visualizations, each users background in the web portal
changes based on their energy efficiency, with pictures of
rain forest for high and desert scenes for low energy effi-
cient user. Detailed experiment design has been included in
Konstantakopoulos et al. (2019).

2.2. Dataset Description and Open-Sourcing

The energy social game dataset so obtained consisted of
per-minute time-stamped reading of each resource (desk
light, ceiling light and fan) status, accumulated usage (in
min/day), resource baseline, points (both from game and
surveys), rank, number of visits to the portal and external
weather metrics like humidity, temperature and solar ra-
diation. Following this, we propose a pooling & picking
scheme to enlarge the feature space by applying a Minimum
Redundancy and Maximum Relevance (mnRMR) (Peng et al.,
2005) feature selection procedure to identify useful features
for our predictive algorithms, such as dummy features (us-
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Figure 2. Illustration of web-portal displaying real-time energy
resource usage by the players. The background is a picture of rain
forest corresponding to a more energy efficient player.

ing one-hot encoding) which includes weekends, breaks,
holidays, midterm and final exam periods, and resource fea-
tures which includes daily % of resource usage. The dataset
has been open-sourced' after proper benchmarking.

3. Benchmarking of Social Game Dataset

In this section, we will explore the benchmarking of the
social game dataset using classical and deep learning meth-
ods for accurate energy resource usage forecasts (utility
estimation). Since human interaction data in general is im-
balanced, we use the Synthetic Minority Over-Sampling
(SMOTE) (Chawla et al., 2002) technique for providing
balanced data sets for each energy resources.

3.1. Machine Learning framework for Modelling
3.1.1. CLASSICAL MACHINE LEARNING MODELS

We train several classifiers as a part of the utility estimation
pipeline. We propose models of logistic regression, logistic
regression with [; penalization (Lasso), linear discriminant
analysis (LDA), support vector machine and random forest
classifiers. We use the Area Under Curve (AUC) (Majnik
& Bosnic, 2013) as our performance metric and perform
5-fold cross validation combined with the AUC.

3.1.2. DEEP NEURAL NETWORKS

We also utilize the potential of deep neural networks (DNN)
for utility estimation that allows us to significantly improve
the accuracy. In a non-cooperative energy game setting,
DNNs work as powerful models that can generalize the core
model by increasing capacity for predicting agent behavior.
Our proposed DNN model includes exponential linear units

"For open sourced social game dataset and demonstrations,
please visit https://smartntu.eecs.berkeley.edu
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(A) AUC SCORES FOR VARIOUS MACHINE LEARNING MODELS

Figure 3. Architecture of Deep Bi-directional Neural Network

(ELUs) (Clevert et al., 2015) at each hidden layer. The us-
age of ELU normally adds additional hyper-parameters as a
trade-off for increase in fitting accuracy. The output layer
is modeled using sigmoid units. We use cross-entropy loss
function and perform training using stochastic gradient de-
scent combined with nesterov optimization. We utilize the
method in (He et al., 2015) for initialization, and use batch
normalization (Ioffe & Szegedy, 2015) and dropout (Srivas-
tava et al., 2014) for efficient training.

An important challenge for sequential decision-making is
the modeling of the dependence of future actions of an
agent with the present and previous actions. In particular,
an agent naturally tries to co-optimize around a set of dis-
crete choices and gains the higher utility. Therefore, we
leverage the time-series DNN models including recurrent
neural networks (RNN) and long short term memory cells
(LSTM) (Goodfellow et al., 2016) to address the issue of
above time dependence. The architecture of our deep bi-
directional RNN is illustrated in Figure 3. We use a sliding
window of 2 hours with 0.6 dropout rate. Training was done
with an exponentially decaying learning rate over 35 epochs.

3.1.3. GRAPHICAL LASSO FOR EXPLAINABILITY

To ensure the collected data incorporates explainable infor-
mation about human decision making towards energy use
in competitive environments, we divide the players into 3
categories based on their rank, as low, medium and high
energy efficient (abbreviated as LEE,MEE and HEE) and
utilize graphical lasso (GLASSO) (Hastie et al., 2015) to
learn feature correlations in each category.

3.2. Experimental Results

We evaluate the performance of utility estimation under
two scenarios. The first scenario involves having full
information from the installed IoT sensors, called “step-
ahead”prediction and second, referred to as “sensor-free”,
involves use of sensor-free features such as external condi-
tions, frequency of visit to web portal and seasonal dummy
variables. The AUC scores using various models are given

WEEKDAY WEEKEND
DEVICE BEFORE| AFTER| p-VALUE | A % | BEFORE AFTER| p-VALUE | A %
CEILING LIGHT | 417.5 393.9 | 0.02 5.6 412.3 257510 37.6
DESK LIGHT 402.2 157510 60.8 | 517.6 1233 |0 76.2
CEILING FAN 663.5 537.6 | 0 19.0 | 847.1 407.0 | 0 51.9

(B) ENERGY SAVINGS ACHIEVED IN THE SOCIAL GAME

Table 1. AUC Score and Energy Savings in the Social Game

in Table la. From the results, it is clear that deep RNN
performs the best in terms of accuracy. In the “sensor-
free results, we have considerable accuracy even with the
IoT feed decoupled. In table 1b, we present the energy
savings achieved and results from hypothesis testing using
energy usage before and after the game. In all of the devices,
we have a significant drop in usage between the two periods.
The results of feature correlation for HEE and LEE players
is given in Figure 4. We observe HEE players showcase pre-
dictable behaviors of energy usage with correlation between
energy resources. LEE players exhibit heedless behavior
towards energy usage with use of desk light in morning.
Their usage is affected by external conditions, unlike HEE
players. For detailed results, please refer Das et al. (2019).
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Figure 4. Feature Correlations using Graphical Lasso
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4. Conclusion

In this work, we designed an energy game-theoretic frame-
work under a non-cooperative game setting at an university
housing. We used classical machine learning models and
deep neural networks to benchmark the accuracy of utility
estimation. Using graphical lasso, we presented the ex-
plainable information inherent in the dataset. Along with
state-of-the-art smart building components (e.g. multimodal
sensing (Zou et al., 2019a), thermal comfort models (Liu
et al., 2018), privacy requirements (Jia et al., 2018)), frame-
works such as ours can be utilized to incorporate energy
efficient behavior among building occupants in large scale.
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