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Abstract

We introduce a method for solving Optimal Power
Flow (OPF) using meta-optimization, which can
substantially reduce solution times. A pre-trained
classifier that predicts the binding constraints of
the system is used to generate an initial reduced
OPF problem, defined by removing the predicted
non-binding constraints. Through an iterative pro-
cedure, this initial set of constraints is then ex-
tended by those constraints that are violated but
not represented in the reduced OPF, guaranteeing
an optimal solution of the original OPF problem
with the full set of constraints. The classifier is
trained using a meta-loss objective, defined by the
computational cost of the series of reduced OPF
problems.

1. Introduction

Many complex systems, such as electricity grids, often re-
quire expensive computations for planning and operations.
For example, a central task of electricity grid operators
(Tong, 2004) is to periodically solve a constrained optimiza-
tion problem, referred to as Optimal Power Flow (OPF).
The goal of OPF is to dispatch generation in order to meet
demand at minimal cost, while respecting reliability and
security constraints. In general, this is a challenging prob-
lem for several reasons. First, OPF is a non-convex and
non-linear constrained optimization problem that can be
mixed integer in its full form. Second, it is computationally
expensive due to the size of power grids, requiring a large
number of diverse constraints to be satisfied. In order to
minimize computational costs, various approximations are
used, such as DC-OPF, which make the problem convex and
reduce the number of variables and constraints. However,
these approximations can lead to various inefficiencies in
grid operations (Ilic et al., 2006).

Electricity production contributed to 27.5% of total U.S.
greenhouse gas (GHG) emissions in 2017. An interesting
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research direction that may have large impacts on emis-
sions is to take such effects into account directly in the
formulation of OPF (Gholami et al., 2014), which makes
the problem even more complex. Further, the integration
of renewable energy sources such as wind and solar add
other complications to OPF due to the volatility of these
resources. Correspondingly, OPF needs to be solved as near
to real-time as possible, further requiring improvements to
OPF convergence times and robustness.

To solve the general OPF problem, interior-point methods
(Wichter & Biegler, 2006) are typically used. These meth-
ods are robust but expensive as they require the computation
of the second derivative of the Lagrangian of the system at
each iteration. There are many approaches to overcome such
problems by using modern machine learning techniques,
which roughly fall into two distinct categories. One ap-
proach is based on directly inferring the optimal solution
of OPF, using a regression in which the optimal solution is
predicted based on the grid parameters. Although this is a
straightforward end-to-end approach, there are two issues
that make it impractical. First, since OPF is a constrained
optimization problem, the solution is not a smooth function
of the grid parameters. Therefore, properly training such
regression models requires substantial training data (Guha
et al., 2019). Second, although in theory this approach does
not require solving OPF — as it provides a full set of grid
state variables — there is no guarantee the solution satisfies
all constraints. Such violations could lead to severe security
issues for the grid.

Instead of using the outputs of a regression model directly,
these can be used to warm-start by initializing an interior
point method with the outputs of the regression model. This
approach can significantly reduce the number of optimiza-
tion iterations compared to the original problem. However,
the computational gain is in practice marginal for several
reasons. First, only primals are warm-started, then duals
also need to converge (Jamei et al., 2019): interior-point
methods set a minimum number of required iterations even
if the primals are set to their optimal values. Second, if the
initial value of primals is far from optimal, the optimization
can lead to a different local minimum, or could potentially
take even longer than the original problem. Finally, even
if the predicted values are close to the optimal solution,
they may begin in an infeasible region, which can result
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in substantially longer solve times, or even convergence
failure. The second approach is based on the observation
that only a fraction of all constraints are actually binding
at the optimum, so a reduced OPF can be formulated by
keeping only the binding constraints. This suggests a clas-
sification formulation, in which the grid parameters are
used to predict the binding status of each constraint. Un-
fortunately, this can also lead to security issues through
false-negative predictions of the binding status of important
constraints. However, by iteratively checking and adding
violated constraints, and then solving the reduced OPF until
all constraints of the full problem are satisfied, this issue can
be avoided. Because the reduced OPF problems are much
cheaper than the full problem, this approach (if converged
in a few iterations) can be very efficient.

As discussed above, conventional methods do not guarantee
security, and therefore additional steps are needed. This
suggests the introduction of a new loss function for the
classifier, which measures the total computational cost until
a secure solution to the full OPF problem is provided by the
above iterative procedure. In a previous work (Jamei et al.,
2019) we combined the regression approach with such a
meta-loss function and used meta-optimization to reduce the
total number of OPF iterations by predicting an appropriate
warm-start for the interior-point primal variables. Inspired
by recent works in predicting active sets of constrains (Misra
etal., 2018; Deka & Misra, 2019), in this paper we combine
the classifier approach with meta-optimization to obtain a
reduced OPF whose security iterations are computationally
optimal. We demonstrate the capability of our method on
several DC-OPF problems.

2. Methods

In order to explore a variety of distinct active sets, grid pa-
rameter samples with feasible solution were generated by
varying these for 8 cases from Power Grid Lib (Babaeine-
jadsarookolaee et al., 2019). In the following, we restrict to
DC-OPF problems and use the PowerModels. j1 (Cof-
frin et al., 2018) OPF package. In order to encode the
uncertainties that a grid operator might face, cases were
generated by drawing samples for a combination of nodal
loads, maximum output power of generators, line thermal
ratings and line reactance values. In particular, the original
case parameters were varied by a scaling factor drawn from
uniform distributions of the form #/(0.85, 1.15) for the load,
and (0.9, 1.1) for the other parameters.

The starting point of our method is to train a neural net
based classifier using grid parameters as features to predict
the binding status of the constraints of the full OPF problem.
As the power flow equality constraints are always binding
we limit considered constraints to branch flow and generator
(upper) bound constraints (the latter restriction due to the

potential for a divergent objective in the absence of lower
limits of generator power). Each constraint is predicted
to be binding or non-binding by a multi-label classifier.
Correspondingly, we use a binary cross-entropy loss with
sigmoid activation in the final layer. The reduced OPF
problem consists of the same objective as the full problem,
but only keeps those constraints that were predicted binding
by the classifier.

As there may be violated constraints not included in the re-
duced model, to ensure convergence to a solution of the full
problem we introduce a security iteration procedure. Here,
a series of reduced OPF problems is solved and successively
extended as needed. This has the following steps (Figure 1).
1) An initial candidate reduced set of constraints A is pro-
posed by the classifier. A reduced OPF solution (pj)) is then
found. 2) Then in each security iteration, k£ € 0. .. K, the
solution (p}) of the reduced OPF is validated against the
constraints C of the original full formulation. 3) Constraints
(M), which are violated in step k are added to the set of
considered constraints, forming constraint set A 1. 4) This
procedure iterates until no violations are found (N = (),
and the solution (p}) is feasible under the original con-
straints C. We note that in general for convex OPF problems
the procedure converges within a few iterations to the full
solution.

A key aspect of our approach is to introduce a meta-loss
function: we define the meta-loss objective as the total com-
putation time of the security iteration procedure, and the
meta-optimization as the optimization of the NN weights
under the meta-loss objective over a training data set. To
be specific, we refer to this step as meta-optimization as
we are optimizing the performance of the OPF solver, by
minimizing the solve-time. This optimization is through
learning a reduced formulation of the OPF problem for the
solver. The meta-loss is a non-differentiable function of the
classifier weights, and therefore we use the gradient-free
Particle Swarm Optimization (PSO) (Kennedy & Eberhart,
1995). The meta-optimization includes the solution of sev-
eral reduced OPF problems for a given training example,
which makes it more expensive than conventional neural net
training: with /V; meta-training examples, N}, particles, and
N meta-optimization steps, at least Ny X N, x Ny reduced
OPF calculations are performed.

To reduce the required number of iterations, the meta-
optimization is started from a classifier trained by conven-
tional stochastic gradient descent. This approach has the
implicit assumption that the local optimum of the meta-loss
is close to the local optimum of the cross-entropy loss. Al-
though the optimal weights of a trained constraint classifier
will be correlated with those trained under a meta-objective
of reduced computation cost, each constraint will have vari-
able importance in the convergence behaviour of the interior
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Figure 1. Flowchart of meta-optimization under the security itera-
tion procedure. Conventional optimization, that provides initial 6
under optimal classification loss, is followed by meta-optimization
of the meta-loss. ®giq is the vector of grid parameters, NNy is
the classifier with weights 6. The meta-loss is computed within
the security iteration, where C denotes the full set of constraints of
the original OPF problem, A}, is the actual set used in the reduced
OPF and NV, is the set of violated constraints. p}, is the solution
of the reduced OPF, where £ = 1. .. K is the iteration index. The
final solution pj; is at k = K when N = 0.

point algorithm. Correspondingly, it is difficult to design a
fully supervised and differentiable OPF-agnostic surrogate
objective to reflect this. In practice, initial training through
a cheap surrogate objective followed with training under the
(expensive) meta-objective is a reasonable way to train.

3. Results

For scenario generation, Table 1 summarizes the number of
distinct active sets along with the number of grid parameters
and constraints as input and output sizes of the classifier,
respectively. To highlight the complexity of the samples, we
compared the number of active sets to those reported in (Ng
et al., 2018), which were generated by scaling nodal load
with a factor drawn from a normal distribution with ¢ = 1.0
and 0 = 0.03. The number of unique active sets in our
samples is generally much higher, which can be attributed
to varying more parameters (not just load), and selecting a
wider deviation for the load values.

Table 1. Number of grid parameters, constraints, and unique active
sets for different grids, using 1000 samples.

# of grid params # of constraints # of active sets

Case

(neural net input)  (neural net output) (Ngetal.,, 2018)  This work
24-ieee-rts 125 140 5 15
30-ieee 105 86 1 1
39-epri 123 112 2 8
57-ieee 206 168 3 8
73-ieee-rts 387 432 21 8
118-ieee 490 410 2 66
162-ieee-dtc 693 592 9 188
300-ieee 1080 936 22 835

Based on the generated 1000 samples for each grid we also
computed the upper limit of computational gain (% x 100)
of the two machine learning approaches, i.e. using a perfect
regressor (full DC-OPF with warm-start from the exact
primals) and classifier (reduced DC-OPF using all and only
binding constraints). The results are collected in Table 2.

The reduced OPF (classification) outperforms the warm-
start approach (regression) even for small systems, and the
gain becomes more significant for larger cases indicating a
higher potential of the classification.

For the classifier, a 3-layer neural net with 50 x 50 hidden
unit was used, with ReLu activations for the first two layers,
sigmoid activation for the output layer, and dropout with a
ratio of 0.4. ADAM with = 10~* was used for optimiza-
tion. We used a split of 900/100 for training and testing
for each grid, terminating after convergence of the loss (20
epochs). For meta-optimization the training data consisted
of 100 randomly drawn examples from those used for con-
ventional training. We found that significant improvement
can be achieved by using a relatively small number of 10
PSO iterations and 10 particles. For testing, 100 samples
were used to compute the meta-loss before and after meta-
optimization. For each grid, 40 independent experiments
were performed by randomly selecting the corresponding
conventional and meta-training data and test data.

Table 2. Average computation gain for perfect regression (i.e., full
DC-OPF with warm-start) and classification (i.e., reduced DC-
OPF) for 8 cases compared to conventional full DC-OPF.

Gain
Case
Regression  Classification

24-ieee-rts 45.64+0.6 52.14£0.6
30-iece 16.3+£0.9 45.240.7
39-epri 37.8£0.6 62.3+0.4
57-iece 34.8+0.7 61.7+0.4
73-ieee-rts 45.04+0.6 59.6+0.4
118-iece 38.8+0.6 74.84+0.2
162-ieee-dtc ~ 60.9+0.4 84.8+0.1
300-ieee 54.7+£0.3 84.240.1

For smaller grid sizes, marginal or no improvement was
observed. This can be explained by the low number of
distinct active sets (Table 1), which can be learned easily
by a conventional classifier. However, as the number of
distinct active sets increases, the meta-optimization begins
improving the classifier more significantly (Table 3).

Table 3. Average computational gain computed from the meta-loss
before and after meta-optimization.

Case Gain

118-ieee 14.4+3.1
162-ieee-dtc  46.2£3.1
300-ieee 49.245.2

4. Conclusion

We introduced a meta-loss function that measures the com-
putational cost of obtaining a guaranteed solution of an OPF
problem, by iteratively solving a series of reduced problems.
The initial reduced OPF problem consists of constraints pre-
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dicted as binding by a neural network based classifier, and
this set is then iteratively extended, resulting in a series of
reduced OPFs. We further performed a meta-optimization
of the classifier, minimizing the meta-loss. We found that
training the classifier using a conventional loss function is
appropriate for small grids, where the number of distinct
active sets is limited, but as the grid size increases, the use
of meta-optimization results in significant computational
gains. Our preliminary results for even larger grids indicate
an increasing gain with the system size.

Finally we note that the method can be easily extended
to AC-OPF problems. In this case, although we expect a
similar trend of increasing gain with the system size, in
general this gain might be more moderate due to the high
number of non-linear equality constraints providing the com-
putationally most expensive part of the optimization using
interior-point methods. We have begun preliminary investi-
gations scaling to larger grids and AC-OPF and leave a full
investigation to future work.
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