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Abstract

We study auctions for carbon licenses, a policy tool used to control the social cost of pollution.
Each identical license grants the right to produce a unit of pollution. Each buyer (i.e., firm that
pollutes during the manufacturing process) enjoys a decreasing marginal value for licenses,
but society suffers an increasing marginal cost for each license distributed. The seller (i.e.,
the government) can choose a number of licenses to auction, and wishes to maximize societal
welfare: the total economic value of the buyers minus the social cost. Motivated by emission
license markets deployed in practice, we focus on uniform price auctions with a price floor
and/or price ceiling. The seller has distributional information about the market, and their goal
is to tune the auction parameters to maximize expected welfare. The target benchmark is
the maximum expected welfare achievable by any such auction under truth-telling behavior.
Unfortunately, the uniform price auction is not truthful, and strategic behavior can significantly
reduce (even below zero) the welfare of a given auction configuration.
We use tools from theoretical computer science and algorithmic game theory to address the
strategic vulnerabilities of these auctions. We describe a subclass of “safe-price” auctions for
which the welfare at any Bayes-Nash equilibrium will approximate the welfare under truth-
telling behavior. We then show that the better of a safe-price auction, or a truthful auction that
allocates licenses to only a single buyer, will approximate the target benchmark. In particular, we
show how to choose a number of licenses and a price floor so that the worst-case welfare, at any
equilibrium, is a constant approximation to the best achievable welfare under truth-telling after
excluding the welfare contribution of a single buyer. This provides a concrete recommendation
for how to set the auction parameters in practice in order to achieve guarantees, even in the face
of strategic participants.
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1 Introduction

Licenses for carbon and other emissions are a market-based policy tool for reducing pollution and mitigating
the effects of climate change. Roughly speaking, a government agency distributes pollution licenses to firms
according to some mechanism. At the end of a period of time (e.g., a year), firms must submit licenses to cover
their pollution or else face severe penalties. Different ways of distributing licenses are possible. For example, if
licenses are simply sold at a fixed price to anyone who wishes to pay, then this is equivalent to a carbon tax where
polluters must pay a linear fee to offset their emissions. Alternatively, in a cap-and-trade mechanism, the agency
releases a fixed number C of pollution licenses, either via a pre-determined allocation at no price (e.g., based
on prior pollution or industry averages) or via auction, and then polluters can trade these licenses on the open
market. Many emission trading systems take features of both schemes, combining a cap-and-trade market with a
price floor p, where each license must be sold above the reserve price of p, and/or a price ceiling p, where an
extra license beyond the cap can always be purchased at a price of p. In general, such a pollution license market is
referred to as an Emission Trading System (ETS).

There are many important ETS in effect today. The EU ETS has thousands of participating firms and has raised
billions of dollars in auction revenue over the past 10 years [2]. The Western Climate Initiative runs a license
auction that is linked between California and Quebec [4, 1], and the Regional Greenhouse Gas Initiative (RGGI,
pronounced ‘Reggie’) serves New England and the New York region [3]. These markets differ in the details of
their implementations, but in each case, licenses are distributed on a regular schedule, with a significant quantity
of those licenses sold at auction.

One can model such a license auction as a multi-unit auction; that is, an auction for multiple identical goods.
There is no bound on the supply of goods, but there is a cost of production corresponding to the social cost of
more pollution. The social cost is typically assumed to be increasing and convex, and the value for licenses
for each buyer is commonly assumed to be increasing and concave [27]. Each of the ETS described above
uses a uniform-price auction rule to resolve this multi-unit auction. Such auctions proceed roughly as follows.
Participating firms declare bids, as a non-decreasing concave function that describes their willingness-to-pay for
varying quantities of licenses. This can alternatively be viewed as a list of non-increasing marginal bids for each
successive license. Any marginal bids below the reserve price p are removed, and licenses are then distributed to
the highest remaining marginal bids while supplies last. Each firm then pays a fixed price p per license, where p is
set to some value between the lowest marginal winning bid and the highest marginal losing bid. Such auctions are
not truthful, but are common in practice due to their many advantageous properties; see, e.g., Chapter 7 of [22].

Implementing a uniform-price auction for carbon licenses presents an optimization challenge: good outcomes
require that the system designer correctly sets the quantity of licenses to distribute and/or the price (either direct
price or auction reserve) at which they will be sold. The goal is to maximize social welfare: the aggregate value
that firms receive for their licenses (i.e., by producing goods) minus the externality on society caused by polluting
the corresponding amount during production. This optimization problem is complicated by uncertainty. Even
if the social cost of pollution is fully known, the designer may not know what the demand for licenses will be,
which makes it hard to predict the optimal level of pollution to allow. The goal of the designer, then, is to set
the parameters of the uniform price auction to maximize the expected outcome over uncertainty in the market.
Notably, the presence of social costs significantly increases the complexity of multi-unit auctions, since efficiency
becomes a mixed-sign objective. Even a slight misallocation of the licenses, resulting in a small reduction of
received value, might have a disproportionately large effect on net welfare. In practice, inefficient allocations may
be partially resolved in the trade phase of cap-and-trade systems. However, there are significant trading frictions,
so it is imperative to choose an initial allocation, via the auction, that is as efficient as possible.

Since uniform price auctions are not truthful, one must account for strategic behavior. A notable feature of ETS
markets in practice is that, despite their size, they commonly have a small number of participants with significant
market power.3 The presence of dominant players suggests imperfect competition and raises the issue of strategic
manipulation, in which large individual firms try to influence the market in their favor. One particular concern is
demand reduction, where firms reduce their bids to suppress the price determined by the auction. We ask: how
should one set auction parameters to (approximately) maximize welfare, in the face of strategic bidding?

1.1 Roadmap

In this paper we apply ideas from theoretical computer science to approach the design of carbon license auctions
with strategic firms. As a result, we provide a concrete recommendation, backed by provable approximation
guarantees, for how to set the parameters of the mechanism used in practice.

3For example, in the EU ETS, the top 10 firms together control approximately 30 percent of all licenses allocated and
traded; see [9], page 127.
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Our main result is a cap-and-price auction whose welfare in equilibrium approximates the maximum welfare of a
cap-and-price auction with non-strategic reporting in markets without a single dominant bidder. In Section 2, we
introduce our model and formally define cap-and-price auctions. In Section 3, we first show that we can restrict
attention to cap-and-price auctions with an infinite price ceiling (i.e., ones who never sell more licenses than the
cap). We then derive a class of such cap-and-price auctions, which we call safe-price auctions, whose performance
in equilibrium approximates the performance in a non-strategic setting. Thus it suffices to show that the best
safe-price auction approximates the best cap-and-price auction in a non-strategic setting. However, this is not true:
we give an example where it can be unboundedly worse. In Section 4, we demonstrate that the only barrier to this
is the existence of a dominant bidder, yielding our main result.

1.2 Related Work

Our work is related to rich line of literature in economics comparing emission licence auction formats and
flat “carbon tax” pricing methods to control the externalities of pollution. Weitzman [27] proposed a model of
demand uncertainty and initiated a study comparing price-based vs quantity-based screening in the context of
pollution externalities. Kerr and Cramton [10] noted that auctions tend to generate more efficient outcomes than
grandfathered contracts (i.e., pre-determined allocations based on prior usage), which distort incentives to reduce
pollution and efficiently redistribute licenses. Cramton, McKay, Ockenfels and Stoft [11] subsequently lay out
arguments in favor of tax-based approaches. Murray, Newell, and Pizer [23] analyze the use of price ceilings
in emission license auctions, and argue that they provide benefits of both auction-based and tax-based systems,
improving efficiency in dynamic markets with intertemporal arbitrage. For a recent overview of auction-based
systems used in practice, from both the economic and legal perspectives, we recommend [9].

Within the theoretical computer science community, there have been numerous studies of the efficiency of auction
formats at equilibrium. For multi-unit auctions without production costs (or, equivalently, no social cost of
pollution), the price of anarchy of the uniform-price auction was shown to be constant for full-information settings,
and this was subsequently extended to Bayes-Nash equilibria [20, 13]. Our work can be seen as an extension
of that work to the setting with a convex cost of allocation. Auctions with production costs have also been
studied [6, 15], but primarily from the perspective of mechanism design, where the goal is to develop allocation
and payment rules to achieve efficient outcomes. In the present work we do not take a mechanism design approach;
we instead restrict our attention to (non-truthful) uniform price auctions, as these are used in practice, and study
bounds on the worst-case welfare at equilibrium under different choices of the auction parameters. For additional
related work, see Appendix A.

2 Preliminaries

There are n firms seeking to purchase carbon licenses. Licenses are identical, and each permits one pollution
unit. Each firm i has a concave non-decreasing valuation curve Vi(·) that maps a number of pollution units
x ∈ Z≥0 to a value R≥0; this is the value they enjoy for polluting this amount. The profile of valuation curves
V = (V1, . . . , Vn) is drawn from a publicly-known distribution F over profiles, where the draw of Vi(·) is the
private information of firm i. Valuations are drawn independently across firms, so F = F1× . . .×Fn is a product
distribution and Vi ∼ Fi.
There is a publicly known convex increasing cost function Q(·) that maps pollution units x ∈ Z≥0 to the value of
externality that society faces for this much pollution. Given a valuation profile (V1, . . . , Vn), the welfare of an
allocation rule x = (x1, . . . , xn) is

∑
i Vi(xi)−Q(

∑n
i=1 xi). Our objective is to maximize expected welfare.

Given an auction M and a distribution F over input profiles, we will write W (M,F ) for the expected welfare of
M on input distribution F . We will sometimes drop the dependence of F and simply write W (M) when F is
clear from context. We emphasize that W (M) is a non-strategic notion of welfare; it is the expected welfare of
M with respect to inputs drawn from F , or equivalently the welfare of M under truthful reporting when agent
valuations are distributed according to F .

Motivated by license auctions used in practice, we study a particular form of uniform price auction that we call a
cap-and-price auction which forces prices to be within some fixed interval.4 A uniform-price auction allocates
C licenses and determines a per-license price p and each firm i pays pi = p · xi. We can think of cap-and-price
(formally defined in definition B.1) as a uniform price auction of up to C licenses, where the price is set to the
lowest winning marginal bid, with two modifications. First, there is a reserve price p, so that possibly fewer than
C licenses are sold if there is not enough demand at price p. Second, if the lowest winning marginal bid would be
larger than p, then the price is lowered to p and firms can purchase as many licenses as they like at this price.

4Note the cap is not a hard constraint, but rather governs which prices bind.
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3 Safe-Price Auctions

We will derive a class of cap-and-price auctions, which we will call safe-price auctions, whose performance in
equilibrium approximates their non-strategic welfare. The hope is that the non-strategic welfare of this class then
approximates the non-strategic welfare of the larger class of cap-and-price auctions.

Definition 3.1. A safe-price auction M(C) is a cap-and-price auction M(C, p, p) parameterized by a license
quantity C, a price floor p = Q(C)/C, and price ceiling p =∞.

This definition restricts cap-and-price auctions in two ways. First, the price ceiling is now infinite. Second,
we have imposed a lower bound on the price floor.5 The first restriction is for convenience, since Lemma 3.1
shows that this does not cause much loss in welfare. We notate mechanisms with no price ceiling (p = ∞) as
M = (C, p). Note that, when is there is no price ceiling, only exactly C or less than C licenses will be allocated.
The proof of Lemma 3.1 appears in Appendix C.

Lemma 3.1. For any distribution F and any cap-and-price auction M(C, p, p), there exist a cap C ′ and price
floor p′ such that W (M(C ′, p′,∞)) ≥ 1

2W (M(C, p, p)).

The second way safe-price auctions restrict price-and-cap auctions is with a lower bound on the price floor. As
Example C.1 shows, the equilibrium welfare of cap-and-price auctions, even those with an infinite price ceiling,
suffer from “demand reduction" in which a bidder improves her price, and hence utility, by asking for fewer
units. This can have drastic consequences on welfare, causing it to become negative, due to the existence of the
social cost. In particular, this means the approximation of such auctions, relative to the best welfare attainable in
non-strategic settings, is unbounded.

Example C.1 illustrates that strategic behavior can cause licenses to be allocated to agents whose marginal values
for these licenses are below Q(C)/C, causing the aggregate value from allocating C licenses to fall below Q(C).
Safe-price auctions seek to prevent this by imposing a sufficiently high price floor; the following lemma (with
proof in Appendix C) shows they are successful. Namely, we show safe-price auctions have good equilibria
compared to their own non-strategic welfare. This motivates us to focus on analyzing the non-strategic welfare of
safe-price auctions.

Lemma 3.2. For any safe-price auction M(C), the expected welfare at any Bayes-Nash equilibrium is at least
( 1
3.15 ) ·W (M(C)).

4 Welfare Approximation

Motivated by Lemma 3.2, we would like to show that the non-strategic welfare of safe-price auctions approximates
that of cap-and-price auctions. Unfortunately, there are cases where this does not hold, as demonstrated by
Example D.1. The example is driven by a single firm that dominates the market and has high variance in their
demand. We next show that this is the only barrier to a good approximation: either a safe-price auction is
constant-approximate, or else one can approximate the optimal welfare by selling to just a single firm. To this end,
we will be interested in the expected maximum welfare attainable by allocating licenses to just one firm, which we
will denote W (1) 6

The following theorem is our main result; its proof is found in Appendix D.

Theorem 4.1. There exists a constant c such that, for any cap C and price floor p, there exists C ′ such that
c ·W (M(C ′)) +W (1) ≥W (M(C, p)).

Note that a corollary of Theorem 4.1 (combined with Lemmas 3.1 and 3.2) is that for any cap-and-price auction
M(C, p, p), there exists some C ′ such that the expected welfare of any Bayes-Nash equilibrium of M(C ′) is at
least a constant factor of W (M(C, p, p))−W (1). That is, the worst-case equilibrium welfare is a constant-factor
approximation to the best welfare achievable by any cap-and-price auction under truth-telling, excluding the
welfare contribution of a single firm.

Also, W (1) is the expected welfare of a truthful mechanism that we call M (1), described in Appendix D. Another
corollary of Theorem 4.1 is that one can approximate the non-strategic welfare of any cap-and-price auction using
either a safe-price auction (so the approximation holds at any Bayes-Nash equilibrium), or using the (truthful)
mechanism M (1) that allocates licenses to at most one firm.

5In fact we set p to be equal to P (C) , but our results still hold if this is relaxed to p ≥ P (C).
6That is, W (1) = EV∼F [maxi,x≥0{Vi(x)−Q(x)}].
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A Additional Related Work

A similar line of literature studied alternative approaches to the related electricity markets, where individual
providers sell electricity into a central grid. Whereas the main issue in emission license sales is the social
externality of production, the main focus in electricity markets was incentivizing participation of small firms. The
primary discussion focused on using uniform pricing versus discriminatory pricing in the resulting procurement
auction [12, 24].

Uniform-price auctions with costs can be viewed as games for which the designer has a mixed-sign objective (i.e.,
total value generated minus the social cost of production). Prior work on the price of anarchy under mixed-sign
objectives has focused primarily on routing games [25, 7, 8]. Results in this space tend to be negative, motivating
alternative measures of performance (such as minimizing a transformed measure of total cost) that avoid the
pitfalls of mixed-sign optimization. Our work shows that in an auction setting, use of an appropriately-chosen
thresholding rule (in the form of a reserve price) can enable a constant approximation to our mixed-sign objective
of total value minus a convex social cost.

There is a vast amount of work on auctions with externalities, such as the seminal work of [16], and other work
including externalities in advertising auctions [14], characterizations of equilibria in auctions with externalities [19],
and more. However, these externalities are private and held by the buyers, as opposed to public and suffered by
the seller as in this paper. In this case, the externality functions more like a production cost, as described above.

Kesselheim, Kleinberg and Tardos [17] study the price of anarchy of an energy market auction, which is a similar
application to the carbon license auction that we study. Their focus is on the uncertainty of the supply and temporal
nature of the auction, and not on externalities of production, and hence their technical model is quite different.

The theory of bidding in uniform-price auctions with imperfect competition is well-developed in the economic
theory literature. Much of this work focuses specifically on the efficiency and revenue impact of demand
reduction, and how modifications to the auction format or context might impact it. Demand reduction occurs at
equilibrium even in very simple settings of full information, can dramatically reduce welfare, and is a concern
in practice [28, 26, 5]. One way to reduce the inefficiency of demand reduction is to perturb the supply, either
by allowing the seller to adjust the supply after bids are received [21], or by randomizing the total quantity of
goods for sale (or otherwise smoothing out the allocation function) [18]. Such results are typically restricted to
full-information settings. Moreover, these approaches are not necessarily appropriate in the sale of government-
issued licenses, where one typically expects commitment and certainty about the quantity being sold. In contrast,
we forego a precise equilibrium analysis and instead argue that setting a sufficiently high price floor can likewise
mitigate the impact of demand reduction.

B Additional Preliminaries

Given some integer x ≥ 0, we write V (x) for the maximum aggregate value that could be obtained by optimally
dividing x licenses among the firms. That is, V (x) = max~y∈Zn

+:||y||1=x
∑
i Vi(yi). We refer to V as the combined

valuation curve. As each Vi(·) is weakly concave, so is V (·). We will sometimes abuse notation and write V ∼ F
to mean that V is distributed as the aggregate value when (V1, . . . , Vn) ∼ F . We’ll writeW (V, x) = V (x)−Q(x)
for the welfare generated by allocating x licenses optimally among the firms.

We’ll write vi(j) = Vi(j) − Vi(j − 1) for firm i’s marginal value for aquiring license j, for each j ≥ 1. By
concavity, vi(·) is non-increasing. We’ll also write Vi(j|k) = Vi(j + k) − Vi(k) for the marginal value of j
additional items given k already allocated. We’ll write di(p) = max{j : vi(j) ≥ p} for the number of units
demanded by bidder i at price p.

We will study equilibria and outcomes of license allocation auctions. An auction takes as input a reported valuation
Vi from each firm i. The auction then determines an allocation x = (x1, . . . , xn) and a price pi ≥ 0 that each firm
must pay. The auctions we consider will be uniform price auctions, where the auction determines a per-license
price p and each firm i pays pi = p · xi. Given an implicit uniform-price auction, we will tend to write xi(Ṽ)

(resp., p(Ṽ)) for the allocation to agent i (resp., per-unit price) when agents report according to Ṽ. For a given
valuation profile V, we’ll also write Ui(Ṽ) for the utility enjoyed by firm i when agents bid according to Ṽ:

Ui(Ṽ) = Vi(xi(Ṽ))− p(Ṽ) · xi(Ṽ).

A Bayes-Nash equilibrium of a uniform-price auction is a choice of bidding strategies σ = (σ1, . . . , σn) for each
agent, mapping each realized valuation curve Vi to a (possibly randomized) reported valuation σi(Vi), so that each
agent maximizes their expected utility by bidding according to σi given that other agents are bidding according to
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σ−i. That is, for all Vi and all Ṽi, we have

EV−i∼F−i
[Ui(σi(Vi), σ−i(V−i))] ≥ EV−i∼F−i

[Ui(Ṽi, σ−i(V−i))].

We make a standard assumption of no overbidding on behalf of the firms uniform-price auction, which is motivated
by the fact that overbidding is a weakly-dominated strategy.
Definition B.1. A cap-and-price auction M(C, p, p) is parameterized by a quantity C ≥ 1, a price floor p, and a
price ceiling p > p. The allocation and price are determined as follows:

1. If
∑
i di(p) ≥ C, then xi = di(p) for all i and p = p.

2. If
∑
i di(p) < C, then xi = di(p) for all i and p = p.

3. Otherwise, choose p = V (C)−V (C−1), the Cth highest bid, and choose ~x to be any optimal allocation
of C licenses among the firms: x ∈ arg max~y∈Zn

+:||y||1=C
∑
i Vi(yi).

Given social cost function Q and valuation distribution F , we will write OPT for the optimal expected welfare
obtained by any cap-and-price auction under truthful reporting. That is, OPT = maxC,p,p{W (M(C, p, p))}. We
will also tend to write C∗, p∗, and p∗ for the parameters that achieve this maximum. We emphasize that this is a
non-strategic notion: OPT is the maximum expected welfare attainable when bidders report truthfully. We view
OPT as a benchmark against which we will compare performance at Bayes-Nash equilibrium. Note also that, in
general, OPT may be strictly less than the expected welfare of the unconstrained welfare-optimal allocation; an
example is provided in Appendix E.

C Omitted Details from Section 3

Lemma C.1. For any distribution F and any cap-and-price auction M(C, p, p), there exist a cap C ′ and price
floor p′ such that W (M(C ′, p′,∞)) ≥ 1

2W (M(C, p, p)).

Proof. We show that given any mechanism M = (C1, p, p), we can construct a mechanism M ′ with price ceiling
∞ such that W (M ′) ≥ 1

2W (M).

We can decompose the expected welfare of M into (a) the welfare attained from the first (at most) C1 licenses
sold, and (b) the incremental welfare attained from any licenses sold after the first C1.

Note that the auction M1 = (C1, p,∞), which is M but with price ceiling set to∞, achieves welfare precisely
equal to the former of these two parts. This is because M1 always allocates at most C1 licenses, and will allocate
them efficiently subject to all marginal values being at least p.

Next consider the second of these two parts of the welfare of M . If the expected welfare in the second part is
negative, then we are already done, so suppose not. Whenever more than C1 licenses are sold, all licenses are sold
at price p, and therefore have marginal value at least p. Auction M2 = (∞, p,∞), with no license cap and with a
price floor of p, will also sell all such licenses that have marginal value at least p. We note, however, that M2

additionally also includes the marginal contribution of the first C1 licenses. But we claim that this contribution is
non-negative: when the event occurs that more than C1 licenses are sold, the marginal contribution of the first C1

licenses to the welfare can only be greater than that of those beyond the first C1. Thus, since the expected welfare
in the second part is non-negative, the welfare is only higher if we also include the contribution of the first C1

licenses whenever more than C1 licenses are sold. This is precisely the welfare of auction M2 = (∞, p,∞), so
the welfare of M2 is therefore at least that of the second of the two parts of the welfare of M .

We conclude that W (M1) +W (M2) ≥W (M), and hence either W (M1) or W (M2) is at least 1
2W (M).

The second way safe-price auctions restrict price-and-cap auctions is with a lower bound on the price floor. As the
following example shows, the equilibrium welfare of cap-and-price auctions, even those with an infinite price
ceiling, suffer from a problem known as demand reduction in which a bidder improves her price, and hence utility,
by asking for fewer units. This can have drastic consequences on welfare, causing it to become negative, due to
the existence of the social cost. In particular, this means the approximation of such auctions, relative to the best
welfare attainable in non-strategic settings, is unbounded.
Example C.1. Consider two agents, 1 and 2. Their distributions over valuations will be point-masses, so that the
valuations are actually deterministic. These valuation functions are given by the following marginals: v1(1) = 10,
v1(2) = 10, v2(1) = 6, v2(2) = 1, and all other marginals are 0. We will have C = 2, p = 0, p = ∞, and the
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social cost function is given by Q(x) = 9x. Under truthful reporting, the auction M(C, p) allocates 2 licenses to
agent 1 at a price of 6 each, resulting in a welfare of V1(2)−Q(2) = 20− 18 = 2. However, we note that firm
1 could improve their utility from 8 to 9 by instead reporting a modified valuation Ṽ given by ṽ1(1) = 10 and
ṽ1(2) = 1. If agent 2 continues to report truthfully, M(C, p) will allocate 1 license to each agent at a price of 1
each, resulting in a welfare of V1(1) + V2(1)−Q(2) = 16− 18 = −2. One can verify that this is indeed a pure
Nash equilibrium of the auction, and hence a Bayes-Nash equilibrium as well.

The issue illustrated in Example C.1 is that strategic behavior can cause licenses to be allocated to agents whose
marginal values for these licenses are below Q(C)/C, causing the aggregate value derived from allocating C
licenses to fall below Q(C). Safe-price auctions seek to prevent this by imposing a sufficiently high price floor.

Indeed, the following lemma shows that price floors do indeed circumvent the issue in the above example. Namely,
we show safe-price auctions have good equilibria, compared to their own non-strategic welfare. This is the main
result of this section, and motivates us to focus on analyzing the non-strategic welfare of safe-price auctions.

Lemma C.2. For any safe-price auction M(C), the expected welfare at any Bayes-Nash equilibrium is at least
( 1
3.15 ) ·W (M(C)).

Proof. Fix a license cap C and write p = Q(C)/C for the corresponding safe price, and recall that M(C) =
M(C, p). We claim that this auction is strategically equivalent to a modified auction, as follows. First, since
each agent pays at least p per license, we can define v̂i(j) = vi(j)− p for the residual marginal utility of agent i
for their jth license, after taking into account that they must pay at least p. Then from each agent’s perspective,
playing in M(C, p) with marginal values vi(j) is equivalent to playing in M(C, 0) with marginal values v̂i(j).
The welfare generated by the original auction is V (x)−Q(x), which is equal to V̂ (x)− (Q(x)− px). So the
welfare generated by M is equivalent to the welfare generated with modified valuations V̂ , where the marginal
social cost of each unit of pollution is reduced by p. But now note that from the definition of p, Q(x)− px ≤ 0
for all x ≤ C. So in an auction with a cap of C, the welfare is at least the welfare obtained with a social cost of 0;
it is always non-negative.

We conclude that the welfare generated by M(C, p), at any equilibrium, is equal to the welfare generated at an
equilibrium of the standard uniform price auction with modified valuations V̂ . Theorem 3 of [13] (which bounds
the welfare in Bayes-Nash equilibria of uniform auctions without costs) therefore applies7, and the welfare at
any equilibrium is at least 1

3.15 times the optimum achievable under the modified valuations, which is at most
W (M(C)).

D Omitted Details from Section 4

The following example shows that there are cases where the non-strategic welfare of safe-price auctions does not
approximate that of cap-and-price auctions. The example consists of just a single firm that dominates the market
and whose demand for licenses has high variance. The firm’s value is always large enough that even at a low price
and high license cap, the resulting allocation has high net welfare. However, safe-price auctions will generate
much lower welfare. Roughly speaking, for any number of licenses C that the auction designer selects as the cap
for a safe-price auction, significant welfare will be lost from realizations where the firm’s demand is much higher
than C, and the corresponding safe price will exclude welfare gains from realizations where the firm’s demand
is much lower than C. If the variance is high enough, this will cause overall welfare to be low regardless of the
choice of C.

Example D.1. We will present an example for which the expected welfare of any safe-price auction M(C) is
at most an O(1/n)-approximation to OPT. Let Q(x) = x2. There is a single firm participating in the auction.
That firm’s valuation curve is drawn according to a distribution F over n different valuation curves, which we’ll
denote V (1), . . . , V (n). For all i, valuation V (i) is defined by V (i)(x) = max{2i+1 · x, 22i+1}. The probability
that V (i)(·) is drawn from F is proportional to 1

22i . That is, the firm has valuation V (i) with probability 1
β22i ,

where β =
∑n
i=1 2−2i = 1

3 (1− 2−2n) is the normalization constant. Note that a cap-and-price auction with cap
C =∞ and price floor p = 1 achieves welfare

∑n
i=1 22i 1

β22i = 1
β · n, so OPT is at least this large.8

7The proof of the 3.15 bound in [13] is actually for a uniform-second-price auction that charges the highest losing bid, or
V (C + 1)− V (C); however, the proof is also correct for charging a price of the lowest winning bid V (C)− V (C − 1).

8In fact, this is the “first-best” welfare obtainable at every possible realization, so this is actually the best possible
cap-and-price auction and hence the exact value of OPT.
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(a) (b)

Figure 1: A visualization of the proofs of Theorem D.1 (a) and Theorem 4.1 (b). The x-axis represents quantity of
licenses; the y-axis represents value. The expected welfare of benchmark W (M(C, p)) is divided into separate
contributions, based on the location of allocation outcome (x, V (x)); these are depicted as shaded regions. Each
of these contributions is bounded by either the welfare of a safe-price auction or the welfare obtained from a single
buyer. Figure (a) is the (simpler) partition used in Theorem D.1, and (b) is the partition used in Theorem 4.1.

Consider a safe-price auction with cap C ′. Suppose that C ′ ∈ (2k, 2k+1] for some k ≥ 1. Then the safe price is
P (C ′) = Q(C ′)/C ′ = (C ′)2/C ′ = C ′ > 2k. If the firm has valuation V (i) with i ≤ k − 1, then all marginal
values are strictly below P (C ′), then no licenses are allocated and the welfare generated is 0. On the other hand,
if the firm has valuation V (i) for any i ≥ k, then since at most C ′ ≤ 2k+1 licenses can be purchased, the auction
generates welfare at most 2i+1(2k+1)− (2k+1)2 = 22k+2(2i−k − 1).

The total expected welfare of M(C ′) is therefore at most

n∑
i=k

22k+2(2i−k − 1) · 1

β22i
=

4

β

n∑
i=k

2−2(i−k)(2i−k − 1) ≤ 4

β
= O(1).

Since OPT ≥ 1
β · n but W (M(C ′)) = O(1) for all C ′, we conclude that no auction with a safe price achieves an

o(n)-approximation to OPT. This concludes the example.

We now prove Theorem 4.1, which we restate here for convenience.

Theorem 4.1. There exists a constant c such that, for any cap C and price floor p, there exists C ′ such that
c ·W (M(C ′)) +W (1) ≥W (M(C, p)).

Recall that W (1) is the expected welfare of a truthful mechanism that we call M (1). In M (1), the firms first
participate in a second-price auction for the right to buy licenses. The firm with the highest bid wins, and pays the
second-highest bid. The winning firm can then purchase any number of licenses x ≥ 0, for which they pay Q(x)
(in addition to their payment from the initial second-price auction). Since the utility obtained by firm i if they win
the initial auction is precisely maxx{Vi(x)−Q(x)}, and since a second-price auction is truthful and maximizes
welfare, we can conclude that W (M (1)) = W (1).

We are now ready to prove Theorem 4.1. Fix a cost function Q and distribution F , and choose the optimal cap C
and price floor p such that W (M(C, p)) is maximized. Let d(·) and x(·) be the demand and allocation functions
for M(C, p). For any given realization of preferences V , there is a total demand d(V ) =

∑
i di(p), where again,

di(p) = arg maxx Vi(x)− px. Recall also that W (x, V ) = V (x)−Q(x) is the welfare generated by allocation
x given aggregate valuation V .

We will begin by proving a simpler version of Theorem 4.1, which is parameterized by q := Pr[d(V ) ≥ C], the
probability that the auction sells C licenses. When q is bounded away from 0, we show that there is a safe-price
auction that achieves an O(1/q)-approximation to W (M(C, p)). We note that this result does not require firm
valuations to be independent, and holds even if the valuations are drawn from an arbitrarily correlated distribution
F . We will explain in Section D.1 how to extend the argument to the general case of Theorem 4.1, with details
deferred to the appendix.

Theorem D.1. For the welfare-optimal cap C and price floor p, there exists a cap C ′ such that (1 + 2/q) ·
W (M(C ′)) ≥W (M(C, p)).
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Proof. The welfare generated by M(C, p) can be broken down as follows:

W (M(C, p)) = PrV∼F [d(V ) ≥ C] · E[W (x(V ), V ) | d(V ) ≥ C]

+ PrV∼F [d(V ) < C] · E[W (x(V ), V ) | d(V ) < C].

The first term is the contribution to the welfare from events where C licenses are sold (or, equivalently, at least C
licenses are demanded). The second term is the contribution from events where the total demand for licenses is
less than C.

Consider price P (C), the safe price for quantity C. We wish to decompose the second term in the expression
above into marginal values above P (C) and those below P (C). For this, we need to introduce some notation.
Write θi for the largest j ≥ 1 such that Vi(j) ≥ P (C), or θi = 0 if Vi(1) < P (C). Write x>i = min{xi, θi}, and
write x<i = xi − x>i . Then x>i is the part of allocation xi for which firm i has marginal value is at least P (C)
per unit, and x<i is the part of xi for which firm i has a marginal value less than P (C) per unit. We’ll also define
V <i as V <i (x) = V <i (x|θi); this is the marginal value of i for receiving x additional licenses after already having
received θi licenses. Note then that Vi(xi) = Vi(x

>
i ) + V <i (x<i ), for all i. We then have

PrV∼F [d(V ) < C] · E[W (x(V ), V ) | d(V ) < C]

=

∫
V : d(V )<C

(∑
i

Vi(xi(V ))−Q(x(V ))

)
dFV

≤
∫
V : d(V )<C

(∑
i

Vi(x
>
i (V ))−Q(x>(V ))

)
dFV +

∫
V : d(V )<C

(∑
i

V <i (x<i (V ))−Q(x<(V ))

)
dFV

where the final inequality used the fact that Q(x) ≥ Q(x<) +Q(x>), due to the convexity of Q. We conclude
that

W (M(C, p)) ≤ PrV∼F [d(V ) ≥ C] · E[W (x(V ), V ) | d(V ) ≥ C] (1A)

+

∫
V : d(V )<C

(∑
i

Vi(x
>
i (V ))−Q(x>(V ))

)
dFV (1B)

+

∫
V : d(V )<C

(∑
i

V <i (x<i (V ))−Q(x<(V ))

)
dFV (1C)

so that W (M(C, p)) ≤ (1A) + (1B) + (1C). See Figure D(a) for an illustration.

We claim that the welfare obtained from the first two terms, (1A) and (1B), are covered by the safe-price auction
with cap C. The intuition is that a price floor of P (C) does not interfere with the welfare contribution due to
licenses with marginal values greater than P (C). One subtlety is that some of the licenses in the summation
(1A) might have marginal values less than P (C), but it turns out that it can only improve welfare to exclude such
licenses from the allocation.

Claim D.1. W (M(C)) ≥ (1A) + (1B).

Proof. Write d′ and x′ for the demand and allocation under auction M(C), respectively. We have

W (M(C)) = PrV∼F [d(V ) ≥ C] · E[W (x′(V ), V ) | d(V ) ≥ C]

+ PrV∼F [d(V ) < C] · E[W (x′(V ), V ) | d(V ) < C].

Note that we intentionally use d(V ), the demand for M(C, p), rather than d′(V ) in the expressions above. The
second term is precisely (1B), since x′i = x>i from the definition of x>. We claim that the first term is at least (1A).
To see why, fix any V with d(V ) ≥ C (and corresponding allocation x = x(V ) where necessarily |x| = C), and
note that x′i ≤ xi for all i. Furthermore, Vi(x′i) ≥ Vi(xi)− (xi − x′i)P (C), since x′i is simply xi after possibly
excluding some items with marginal value less than P (C). Thus, since |x| = C,

V (x′)− |x′| · P (C) ≥ V (x)− |x| · P (C) = V (x)−Q(|x|).

Also, by convexity, we have Q(y) ≤ y · P (C) for all y ∈ [0, |x|]. In particular, we have V (x′) − Q(|x′|) ≥
V (x′)− |x′| · P (C) ≥ V (x)−Q(|x|), and hence

PrV∼F [d(V ) ≥ C] · E[W (x′(V ), V ) | d(V ) ≥ C] ≥ PrV∼F [d(V ) ≥ C] · E[W (x(V ), V ) | d(V ) ≥ C]

as claimed.
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The more difficult part of the proof of Theorem D.1 is to account for term (1C). This represents the contribution
of licenses whose marginal values lie below P (C), and are therefore excluded when the price floor is set to
p = P (C). What we show is that the welfare contribution from all such licenses is approximated byW (M(C/2)),
the welfare obtained by the safe auction with cap C/2.9 We do this in three steps. First, we show that any optimal
cap-and-price auction M(C, p) must generate non-negative expected welfare conditional on selling C licenses.
The intuition is that if the expected welfare from selling C licenses is negative, then it must be strictly preferable
to reduce the quantity of licenses.

Lemma D.1. If capC and price floor p are chosen to maximizeW (M(C, p)), then EV∼F [W (M(C, p)) | d(V ) ≥
C] ≥ 0, where d(V ) is the total quantity of licenses demanded at price p.

Proof. Suppose not. Then it must be that E[W (V, x(V )) | d(V ) ≥ C] < 0.We will show this impliesW (M(C−
1, p)) > W (M(C, p)), contradicting the optimality of C. To see why, note that when d(p) < C, the welfare of the
two auctions is identical. Write x and x′ for the allocation functions from M(C, p) and M(C − 1, p), respectively.
When x ≥ C, we have x′ = C − 1, and V (x′) ≥ C−1

x · V (x) by concavity. Similarly, Q(x′) ≤ C−1
x ·Q(x) by

convexity. Thus, for any V such that d(V ) ≥ C and hence x(V ) = C, we have

V (x′(V ))−Q(x′(V )) ≥ C − 1

x(V )
(V (x(V ))−Q(x(V ))) =

C − 1

C
(V (x(V ))−Q(x(V ))).

Taking expectations, we therefore have

E[V (x′(V ))−Q(x′(V )) | d(V ) ≥ C] ≥ C − 1

C
(E[V (x(V ))−Q(x(V )) | d(V ) ≥ C])

> E[V (x(V ))−Q(x(V )) | d(V ) ≥ C]

where the last inequality follows because E[V (x(V ))−Q(x(V )) | d(V ) ≥ C] < 0 by assumption. This implies
W (M(C − 1, p)) > W (M(C, p)), which is the desired contradiction.

Next, for any cap-and-price auction M , we provide an upper bound on the total welfare contribution that comes
from events where x < C licenses are sold, and the average marginal value of the sold licenses, V (x)/x, is less
than P (C). In fact, it will be useful to state the lemma more generally: we provide a more general bound that
applies to any C̃ ≤ C and any valuation that is at most P (C̃) · x (not necessarily V (x)). The lemma bounds the
total welfare contribution, P (C̃) · x −Q(x), by the difference in price between (a) C̃ licenses sold at the safe
price for C̃, and (b) the same C̃ licenses sold at the safe price for C̃/2.

Lemma D.2. Choose some quantity C̃ and a number of licenses x ≤ C̃. Then P (C̃) · x−Q(x) ≤ C̃ · (P (C̃)−
P (C̃/2)).

Proof. Suppose x ≥ C̃/2. Then Q(x) ≥ x
C̃/2
· Q(C̃/2) by convexity. So P (C̃) · x − Q(x) ≤ x ·(

P (C̃)−Q(C̃/2)/(C̃/2)
)
≤ C̃ · (P (C̃)− P (C̃/2)) as claimed.

Next suppose x < C̃/2. Then (x, P (C̃) · x) and (x,Q(x)) both lie between the line through the origin with
slope P (C̃), and the line between (C̃,Q(C̃)) and ( ˜C/2, Q(C̃/2)). Their difference is therefore at most twice the
difference between those two lines at x-coordinate C̃/2, which is (C̃/2) · (P (C̃)− P (C̃/2)).

We are now ready to bound the contribution of (1C). The intuition is as follows. By Lemma D.2, the contribution
from (1C) is at most (a constant times) the gap between the line y = P (C) · x and the curve Q(x) at point
x = C/2. But recall that Pr[d(V ) ≥ C] = q, and Lemma D.1 implies that, on average, the expected marginal
value of licenses allocated subject to this event is at least P (C). Therefore, if we set a license cap of C/2, then
with probability at least q all C/2 licenses will be sold at an average expected marginal value of at least P (C).
The welfare generated in this case covers the “gap” at C/2, and hence covers the loss due to excluding licenses
with marginal values at most P (C).

Claim D.2. W (M(C/2)) ≥ 1
2q · (1C).

9For convenience we will assume C is even for the remainder of this section. When C is odd, the result holds for at least
one of the floor or the ceiling of C/2. Details appear in the full version.
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Proof. Write d′ and x′ for the demand and allocation under mechanism M(C/2), respectively. Choose any V
such that d(V ) ≥ C. For any such V , d′(V ) ≤ d(V ), and is formed by removing items with marginal value at
most P (C/2). In particular, since x′(V ) ≤ d′(V ), we have V (x′(V )) ≥ V (C)− (C − x′(V )) ·P (C/2). Noting
that Q(|x′(V )|) ≤ |x′(V )| · P (C) since x′(V ) ≤ x(V ), we have

V (x′(V ))−Q(|x′(V )|) ≥ V (x′(V ))− |x′(V )| · P (C)

≥ V (C)− (C − |x′(V )|) · P (C/2)− |x′(V )| · P (C).

Taking an expectation over all V such that d(V ) ≥ C, we note that Lemma D.1 implies E[V (C)] ≥ C · P (C).
We therefore have

E[V (x′(V ))−Q(|x′(V )|)] ≥ C · P (C)− (C − E[|x′(V )|]) · P (C/2)− E[|x′(V )|] · P (C)

= (C − E[|x′(V )|])(P (C)− P (C/2))

≥ (C/2) · (P (C)− P (C/2))

where in the last inequality we used that |x′(V )| ≤ C/2 by definition. Since Pr[d(V ) ≥ C] = q, we therefore
have that

W (M(C/2)) ≥ Pr[d(V ) ≥ C] · E[V (x′(V ))−Q(|x′(V )|) | d(V ) ≥ C] ≥ q(C/2) · (P (C)− P (C/2).

We now claim that (C/2)·(P (C)−P (C/2) ≥ (1C)/2, completing the proof. To see why, note that for any x∗ < C
and any V , V <(x∗)−Q(|x∗|) ≤ |x∗|·P (C)−Q(|x∗|). Thus (1C) ≤ maxx∗{|x∗|·P (C)−Q(|x∗|)}. But note that
for any x∗ > C/2, we haveQ(x∗) > |x∗|P (C/2), and hence |x∗| ·P (C)−Q(|x∗|) ≤ |x∗| ·(P (C)−P (C/2)) ≤
(C) · (P (C) − P (C/2)). Also, for any x∗ < C/2, Q(|x∗|) lies above the line joining (C/2, Q(C/2)) and
(C,Q(C)), and hence |x∗| · P (C)−Q(|x∗|) is at most the distance between |x∗| · P (C) and this line, which is at
most (C) · (P (C)−P (C/2)). So in either case we have maxx∗{|x∗| ·P (C)−Q(|x∗|)} ≤ C · (P (C)−P (C/2))
as required.

Combining Claim D.1 and Claim D.2 we have that W (M(C)) + (2/q)W (M(C/2)) ≥ W (M(C, p)), which
completes the proof of Theorem D.1.

As a corollary, Theorem D.1 combined with Lemma 3.2 and Lemma 3.1 implies that for any cap and price auction
M(C, p, p), there exists a safe-price auction M(C ′) such that, at any Bayes-Nash equilibrium of M(C ′), the
expected welfare generated is at least 1

3.15 ·
1
2 ·

1
1+2/q ·W (M(C, p, p)). In particular, if q is a constant bounded

away from 0, then M(C ′) obtains a constant fraction of W (M(C, p, p)) at any Bayes-Nash equilibrium.

D.1 The General Case

We complete the proof of Theorem 4.1 in Appendix D.2. Here we describe at a high level what steps are
needed to complete the argument. We will focus on the case where Pr[d(V ) ≥ C] < 1 − 1/e, since if
Pr[d(V ) ≥ C] ≥ 1− 1/e then Theorem 4.1 follows from Theorem D.1.

Recall that in Claim D.2, we used the assumption that Pr[d(V ) ≥ C] = q to argue that the welfare gained in
M(C/2) in the event that d(V ) ≥ C covers the welfare lost from marginals lying below P (C), up to a constant
factor. If the probability that d(V ) ≥ C is small, then this may no longer be true. To handle this, we consider
a reduced cap Cmed < C set to be the largest integer such that Pr[d(V ) ≥ Cmed] ≥ 1 − 1/e. Our hope is to
reproduce the argument from Claim D.2, but substituting Cmed for C. To this end, we divide the welfare of
M(C, p) into four parts: all welfare under the event that d(V ) > C; all welfare from individual agents whose
demand is at least Cmed; the contribution of marginal values greater than P (Cmed) (but with individual firms
demanding at most Cmed) when d(V ) < C, and the contribution of marginal values less than P (Cmed) when
d(V ) < C. See Figure D(b) for an illustration.

As in the proof of Theorem D.1, the contribution due to events where d(V ) > C can be covered by the welfare of
M(C,P (C)).

The contribution from agents who individually demand at least Cmed licenses is a new case that we didn’t have to
handle in Theorem D.1. It is here that we use M (1), allocating to any single agent. Because the total demand is
at most than Cmed with probability at least 1/e, independence implies that the expected number of agents who
demand more than Cmed licenses is at most 1, given that the probability that none have demand more Cmed must
be at least 1/e. So the total contribution to welfare of all such events is at most W (M (1)).

If d(V ) ≤ Cmed, then the contribution from marginal values that are at least P (Cmed) can be covered by the
welfare of M(Cmed, P (Cmed)), precisely as in Claim D.1. We must also handle the case that d(V ) ∈ [Cmed, C],
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and consider the welfare contribution of agents that do not (individually) demand more than Cmed licenses. Here
we use independence: the total quantity demanded by such “small” agents is likely to concentrate, so it is unlikely
that the total demand will be larger than 2Cmed. Thus, by imposing a cap of Cmed, we lose at most a constant
factor of the welfare from marginal values greater than P (Cmed).

The final step is to show that W (M(Cmed/2)) obtains at least a constant fraction of the welfare generated by
marginal values less than P (Cmed), similarly to Claim D.2. When proving Claim D.2, we used Lemma D.1
to argue about the welfare generated by events where d(V ) > C. Unfortunately, Lemma D.1 does not extend
to Cmed: it could be that the expected welfare generated by M(Cmed, P (Cmed)), conditional on selling Cmed

licenses, is negative. However, we can prove an upper bound on how negative this expected welfare can be. After
all, if the expected welfare is sufficiently negative sufficiently often, it would be welfare-improving to increase the
price floor of M(C, p) from p to P (Cmed), contradicting the supposed optimality of M(C, p). This turns out to
be enough to prove a bound similar to Claim D.2.

Combining these bounds, we can conclude that each of the four parts of the welfare of M(C, p) can be covered by
either a safe-price auction or by M (1), which completes the proof of the theorem.

D.2 Remaining Details

Recall the statement of Theorem 4.1: for any cap C and price floor p, there exists C ′ and a constant c such that
c ·W (M(C ′)) +W (M (1)) ≥W (M(C, p)).

As in the proof of Theorem D.1, the welfare generated by M(C, p) can be broken down as follows:

W (M(C, p)) = PrV∼F [d(V ) ≥ C] · E[W (x(V ), V ) | d(V ) ≥ C]

+ PrV∼F [d(V ) < C] · E[W (x(V ), V ) | d(V ) < C]

We will break down the second term into three sub-terms. Recall that we can assume Pr[d(V ) ≥ C] ≤ 1− 1/e.
Choose Cmed < C so that Pr[d(V ) ≥ C] = 1− 1/e. We will write xi = x∗i + x>i + x<i . If xi ≥ Cmed then we
set x∗i = xi and x>i = x<i = 0, otherwise we set x∗i = 0. In this latter case, we set x>i and x<i similarly as in
case 1, except that we consider marginal values above and below P (Cmed) rather than P (C). That is, if θi is
the largest j ≥ 1 such that vi(j) ≥ P (Cmed) (or θi = 0 if vi(1) < P (Cmed)), we have x>i = min{xi, θi} and
x<i = xi − x>i . And as before, we will define V <i as V <i (x) = V <i (x|θi), the valuation of i counting only those
marginal values less than P (Cmed).

Using convexity of Q as in case 1, we then have

W (M(C, p)) ≤ PrV∼F [d(V ) ≥ C] · E[W (x(V ), V ) | d(V ) ≥ C] (2A)

+

∫
V : d(V )<C

(
∑
i

Vi(x
∗
i (V ))−Q(x∗(V )))dFV (2B)

+

∫
V : d(V )<C

(
∑
i

Vi(x
>
i (V ))−Q(x>(V )))dFV (2C)

+

∫
V : d(V )<C

(
∑
i

V <i (x<i (V ))−Q(x<(V )))dFV (2D)

so that W (M(C, p)) ≤ (2A) + (2B) + (2C) + (2D).

As in Theorem D.1, we have that W (M(C)) ≥ (2A). For (2B), note that the probability that every bidder i has
xi < Cmed is at least 1/e, from the definition of Cmed. If we write pi for the probability that xi < Cmed, then
we have

∏
i pi ≥ 1/e. Subject to this condition, the value of

∑
i(1− pi) is maximized by setting all pi equal, in

which case we have
∑
i(1− pi) ≤ n(1− e−1/n) ≤ 1. But this means that the expected number of agents with

xi ≥ Cmed is at most 1. Thus, (2B) is at most the value of allocating to just a single bidder with xi > Cmed,
which is at most the maximum possible welfare attainable from allocating to any one bidder. We therefore have
that W (M (1)) ≥ (2B).
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We next claim that W (M(Cmed)) ≥ (2C)/4. To see why, note that∫
V : d(V )<C

(
∑
i

Vi(x
>
i (V ))−Q(x>(V )))dFV

≤ 2

∫
V : d(V )<C

1[x(V ) < 2Cmed] · (
∑
i

(
Vi(x

>
i (V ))− x>i ·

Q(x>(V ))
x>(V )

)
dFV

≤ 4

∫
V : d(V )<C

1[x(V ) < 2Cmed] ·

∑
i

∑
j≤x>

i

vi(j)/2

− x>i · Q(min{Cmed,x
>(V )})

min{Cmed,x>(V )}

 dFV

≤ 4W (M(Cmed))

where the last inequality follows because, when imposing a cap of Cmed on an allocation of total size at most
2Cmed, the value obtained is at least the top half of all marginal values, which is more than half of all marginal
values.

Finally, we claim that W (M(Cmed/2)) ≥ (2D)/21. Define Ψ := (Cmed/2) · (P (Cmed)− P (Cmed/2)). Then
Lemma D.2, combined with the fact that the total demand is at most Cmed with probability 1/e, implies that
(2D) ≤ (2/e) ·Ψ.

We claim that for β = 8/3(e−1) ≈ 1.55, we must have Pr[V (Cmed) < Q(Cmed)−β ·Ψ | d(V ) > Cmed] ≤ 1/4.
That is, conditional on having total demand at least Cmed, the probability that the welfare generated at Cmed is
more negative than −β ·Ψ is at most 1/4. Suppose not: then consider the difference in welfare between M(C, p)
and M(C,P (Cmed)). The difference is that (2D) would be removed, as would any (negative) contribution with
V (Cmed) < Q(Cmed) and d(V ) > Cmed. As we noted above, the total contribution of (2D) to the welfare
is at most 2Ψ/e. But the contribution due to the event V (Cmed) < Q(Cmed) − Ψ and d(V ) > Cmed is at
most −(βΨ)(1− 1/e)(3/4). So as long as β ≥ (8/3(e− 1)) ≈ 1.55, we would have W (M(C,P (Cmed))) >
W (M(C, p)). This contradicts the optimality of M(C, p).

We can therefore assume Pr[V (Cmed) ≥ Q(Cmed) − βΨ | d(V ) > Cmed] ≥ 1/4. By concavity of V and
convexity of Q, this means Pr[V (Cmed/2) ≥ Q(Cmed/2) + (2 − β)Ψ/2 | d(V ) > Cmed] ≥ 1/4. Since
d(V ) > Cmed with probability at least 1 − 1/e, the total welfare generated by M(Cmed/2) from the events
d(V ) > Cmed is at least (2 − β)(1 − 1/e)Ψ/8, and hence W (M(Cmed/2)) ≥ (2 − β)(1 − 1/e)Ψ/8. Since
(2− β)(1− 1/e)e/16 ≥ 1/21, the result follows.

We conclude thatW (M(C))+W (M (1))+4W (M(Cmed))+21W (M(Cmed/2)) ≥W (M(C, p)). This implies
Theorem 4.1, with c = 26.

E Cap-and-Price Auction Outcomes are not Fully Efficient

We note that cap-and-price auctions cannot always implement the fully optimal allocation rule for every distribution
F . For an allocation rule to be implementable by some M(C, p, p), it must be that on every input V, either the
total allocation is C, or the total allocation is at most C and each agent wins precisely their marginal bids above
p, or the total allocation is at least C and each agent wins precisely their marginal bids above p. When there is
uncertainty about V, such a restricted allocation rule might return suboptimal allocations on some realizations.

In fact, we note that there are cases where, even under truthful reporting, no cap-and-price auction can achieve a
non-vanishing approximation of the unrestricted welfare-optimal allocation.
Example E.1. We present an example for which the expected welfare of any cap-and-price auction M(C, p) is at
most an O(1/n)-approximation to the unrestricted allocation that can optimize individually for each realization of
the valuation curves, the welfare of which we call the “first-best welfare” in line with economics terminology.

Let Q(x) = x2. There is a single firm participating in the auction. That firm’s valuation curve is drawn
according to a distribution F over n different valuation curves, which we’ll denote V (1), . . . , V (n). For all i,
valuation V (i) is defined by V (i)(x) = 2i+1 · x. These curves are depicted in Figure E. The probability that
V (i)(·) is drawn from F is proportional to 1

22i . That is, the firm has valuation V (i) with probability 1
β22i , where

β =
∑n
i=1 2−2i = 1

3 (1− 2−2n) is the normalization constant.

Then in expectation over the realizations of V (·), the first-best welfare is
n∑
i=1

22i
1

β22i
=

1

β
· n.
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Figure 2: A depiction of Example E.1, with the welfare achieve by the vertical cap and dashed price floor denoted
by the checks and x’s.

Consider a cap-and-price auctionM(C, p). For any capC, the optimal price floor is to set p = 2C. This eliminates
all possible negative welfare contributions at C. As a sanity check, any smaller price floor allows negative
contributions, yet any larger price floor excludes positive contributions. For C ′ ∈ (2k, 2k+1], , if the firm has
valuation V (i) with i ≤ k, then all marginal values are strictly below p, so no licenses are allocated and the welfare
generate is 0. On the other hand, if the firm has valuation V (i) for any i ≥ k + 1, then since at most C < 2k+1

licenses can be purchased, the auction generates welfare at most 2i+1(2k+1)− (2k+1)2 = 22k+2(2i−k − 1). This
yields expected welfare

n∑
i=k+1

22k+2(2i−k − 1) · 1

β22i
=

1

β

n∑
i=k+1

2−2(i−k−1)(2i−k − 1)

=
1

β

n−k∑
j=1

2−2(j−1)(2j − 1)

≤ 1

β

n−k∑
j=1

2−(j−1)

=
1

β
(2− 2−(n−k−1))

≤ 2

β
= o(n).

In comparison to OPT, any cap-and-price policy is off by an order of n, so no o(1/n)-approximation to the
first-best welfare is possible. This concludes the example.
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