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Abstract

Beavers’ habitat is known to alter the terrain, pro-
viding biodiversity in the area, and recently their
lifestyle is linked to climatic changes by reduc-
ing greenhouse gases levels in the region. To
analyse the impact of beavers’ habitat on the re-
gion, it is, therefore, necessary to estimate the
terrain alterations caused by beaver actions. Fur-
thermore, such terrain analysis can also play
an important role in domains like wildlife ecol-
ogy, deforestation, land-cover estimations, and
geological mapping. Deep learning models are
known to provide better estimates on automatic
feature identification and classification of a ter-
rain. However, such models require significant
training data. Pre-existing terrain datasets (both
real and synthetic) like CityScapes, PASCAL,
UAVID, etc, are mostly concentrated on urban
areas and include roads, pathways, buildings, etc.
Such datasets, therefore, are unsuitable for for-
est terrain analysis. This paper contributes, by
providing a finely labelled novel dataset of forest
imagery around beavers’ habitat, captured from
a high-resolution camera on an aerial drone. The
dataset consists of 100 such images labelled and
classified based on 9 different classes. Further-
more, a baseline is established on this dataset us-
ing state-of-the-art semantic segmentation models
based on performance metrics including Intersec-
tion Over Union (IoU), Overall Accuracy (OA),
and F1 score.

1. Introduction

Beavers are well-known for changing the existing ecosystem
and terrain by cutting down trees, digging canals, construct-
ing dams and lodges on streams, thereby, creating wetlands
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and ponds. Recent studies (Nummi et al., 2018) have in-
dicated that building dams increase the water levels in the
area and as a result, reduces the carbon levels by absorbing
carbon directly from soil and carbon dioxide from the air.
This carbon is further dissolved in the soil to be later used by
plants or is transferred downstream. To estimate the impact
on climate, it is, therefore, necessary to first identify the
changes in the terrain around beavers’ habitat caused by
beaver actions. Hence, the main aim of this research is to
analyse the performance of pre-existing deep learning mod-
els to perform classification and recognition of local textural
patterns like shrubs, beaver lodges and dams, vegetation,
trees, etc within terrain images.

Legacy computer vision methods like colour histogram and
estimating the colour frequency and other feature map ex-
traction models like Random Forests (RF) (Breiman, 2001)
and Conditional Random Fields (CRFs) (Lafferty et al.,
2001) etc were used previously however such algorithms
are mostly ineffective as terrain images are susceptible to
climatic and locality-based changes. Furthermore, colour
characteristics within the same class make them indistin-
guishable from each other, sometimes, even for a human
eye.

Semantic segmentation assigns each pixel in an image a
specific class label, which is the core requirement of our
classification problem. Semantic segmentation divides the
data in the domain into smaller units like superpixels, super
voxels, grid-based units, etc. Object detection, in contrast,
uses a template matching algorithm and creates a bound-
ing box over units based on the correlation between the
matching template and the pixel data. Such a bounding box
never tightly fits the detected classes and hence not usable
on terrain patterns captured by aerial drone imagery, where
the size of such objects is extremely small. Deep neural
networks outperform any other frameworks used in com-
puter vision for solving problems in domains like pattern
recognition, feature extraction, and detection/classification.
Because of the complexity of the patterns in terrain, current
classification problem requires proper extraction of features
from images for classification. One of the most important
challenges thus, using such models, is the lack of datasets
to train deep models. The key contributions of this paper,
thus, include (a) A novel dataset that consists of 100 high-
resolution images taken from UAV near beaver habitat. The
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images are labelled for 9 distinct classes. Images are split
into two parts, training and validation. Training contains
70 images whereas validation and testing contain 30 im-
ages. Each image is 18 MB with 300 dpi and pixels size
is 5472*3648. (b) A benchmark on the proposed dataset
by evaluating multiple state-of-the-art segmentation mod-
els. The evaluation is performed using 3 different metrics
namely, Overall accuracy (OA), Dice coefficient (F1 Score),
and Jaccard index (Intersection over union - IOU).

The rest of this paper organized as follows: Section 2 pro-
vides an overview of the current literature, Section 3 intro-
duces our proposed dataset for forest terrain identification
containing patterns that contribute to the climatic conditions,
Section 4 discusses our evaluation approach and a bench-
mark for the proposed dataset, Section 5 presents evaluation
results and a discussion of results, and finally, Section 6
concludes the paper and discusses future works.

2. Literature Review

FCN (Shelhamer et al., 2016) performed segmentation tasks
with high accuracy by performing an “end-to-end” training
mechanism. Such convolutional networks take any image of
any input size based on the model parameters and then out-
put the same image with segmented masks applied. (Ziirn
et al., 2020) explored the self-supervised learning in the
domain of terrain identification for self-autonomous robots.
(Kattenborn et al., 2021) used different CNN-based archi-
tectures to identify vegetation via remote sensing.

A powerful deep network U-Net (Ronneberger et al.,
2015) introduced skip connections and residual networks to
achieve high accuracy on a biomedical dataset. The model
can be enhanced using multiple architectural backbones and
weights from different models. SegNet (Badrinarayanan
et al., 2016) was an upgrade to UNet. Instead of passing
complete features to the next layer, only the max pooled
version of features was passed on thereby increasing per-
formance. Similarly, basic computer-vision-related tasks
like rotation equivariance were performed to segment high-
resolution images captured from a direct flight path. (Arun
et al., 2019) created dataset using super-high-resolution im-
ages from drones to train different CNN however the dataset
mostly consists of mild areas and is not suitable for forest
terrains. (Fikri et al., 2019) used CNN to cluster trees as su-
perpixels and then perform pixel-based segmentation using
colour threshold.

Simple Linear Iterative Clustering (SLIC) (Achanta et al.,
2012), and Simple Non- Iterative Clustering (SNIC)
(Achanta & Susstrunk, 2017) have successfully been im-
plemented to generate powerful superpixel based segmen-
tations. SLIC performs k-means on CIELab colour code
instead of using RGB images to generate macro superpixels.

The SNIC algorithm instead of using k-means like SLIC
clusters pixels by explicitly enforcing connectivity from the
start.

Since superpixels make a macro pixel of localized area,
adding CNN to train such models reduces the complexity
and improves efficiency for semantic segmentation. Such
a model was used by (Yang et al., 2020) where superpixels
were used with CNN on a video stream of 50fps. Superpix-
els were then down-up sampled using autoencoder approach
to generate predictive masks. (Wang et al., 2019) used
similar approach however they introduced two datasets to
classify porifera region in water. (Chen et al., 2019) used
multiple superpixel methods to classify land cover area us-
ing deep neural networks. However, the problem remains
challenging.

3. Proposed Dataset

The goal of this research is to perform a quantitative analysis
of different terrain patterns for climate analysis using state-
of-art models. To this end, the dataset must contain all
possible patterns that contribute to the climatic conditions.
It is also important to capture and identify data that must
not be biased to a single class as some patterns can be
in excessive quantity in a terrain than others. For forest
terrain identification, no such dataset so far, to our best of
knowledge, is available. The terrain identification requires
images, to be captured from an aerial view to encompass a
large area. Some of the already existing datasets available
are CityScapes (Cordts et al., 2016) PASCAL (Everingham
etal., 2015) UAVID (Lyu et al., 2020) etc. However, none of
the above datasets contain images related to forest imagery
and are mostly concentrated on urban regions, containing
buildings, road pathways, etc.

3.1. Data Collection

To collect data, UAVs are used with mounted cameras hav-
ing a resolution of 18 megapixels. A single image resolution
is 5472*3648 with each image size being approximately 13
MB. The images are captured on a medium sunny day to
acquire maximum details of the terrain. For annotations,
multiple 3rd party tools are available. Some of the famous
tools are QGIS (QGIS, 2020), ArcGIS (ArcGis, 2020) and
LabelBox (LabelBox, 2020). After careful consideration
and experiments, we found LabelBox to be easier to use.
The annotations are performed on 100 different images with
all images selected in a manner to create a balanced dataset
for all classes.

The terrain is classified into 10 different classes and their
percentage is dataset is shown in Table 1. ROI (Region of in-
terest) annotations were performed on images on maximum
zoom to provide the best possible results and therefore took
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Figure 2. (a) and (c) are sample images. (b) and (d) are correspond-
ing generated masks.

nearly 30 min - 1 hour on an image based on the complexity
of terrain in each image. Sample images and their corre-
sponding generated masks are shown in Fig 2 and Fig 2.
Each image was labelled in maximum resolution; therefore
each image is subdivided into 240 parts keeping aspect ratio
same to avoid any distortions. Each image thus generated
has a resolution of 342*243. Furthermore, these images
are subjected to cropping to adjust their sizes to 340%240.
This action is performed to avoid size differences, caused
by applying pooling layers in deep models.

3.2. Dataset Classes

Table 1. shows the chosen class attributes and their percent-
age of occurrences in the dataset. It should be noted, even if
the images were high resolution, there are some instances
where small terrain patches are not clearly recognized and

taset cl

Table 1. Distribution of classes in the dataset

CLASS TRAIN(%)  VALIDATION(%)
UNKNOWN 1.58 1.64
SHRUBS 15.72 13.83
GRASS 14.05 13.74
LARGE SHRUBS 10.22 11.22
VEGETATION 13.41 13.16
STONES 11.38 10.43
WATER 12.35 13.73
SoiL 13.05 14.26
BEAVER DAM 8.24 7.99

are marked with class unknown. The datasets are marked
in a fashion to keep such annotations minimum. Further-
more, corresponding class masks are given zero RGB values
to avoid any conflicts with other classes. Sample class im-
ages are shown in Fig 2.

4. Evaluations

Evaluation of the performance of any deep learning model
on a dataset poses different challenges. The models may
provide good results depending on measured performance
metrics. However, the real performance (e.g. accuracy) can
be quite different when wrong metrics are selected, there-
fore, it is necessary to test models on multiple metrics. To
evaluate the state-of-art models on our dataset, the models
are evaluated using 3 different metrics and the result are
summarized in a table.

4.1. Performance Metrics

Pixel accuracy is a quantitative metric that calculates the
percentage of correct pixels classified for a class compared
with the actual ground truth. This metric is greatly affected
by class imbalance. The metric assigns equal weight
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Table 2. Pre-trained Models used for Evaluation

Model Description

UNet (Ron-  An Encoder-Decoder architecture with Skip-Connections. The encoder is feed-forward CNN (backbone)
neberger et al., to extract feature maps of images. Decoder upsamples the feature map to generate back the information.
2015)

FPN (Lin et al., Bottom-up pathway is a CNN (backbone) to extract feature maps. Using pyramid modelling strategy,
2017) low-resolution feature map from higher layers are merged with high-resolution feature map from lower

layers and result is provided to object detector model
HR-Net (Sun The high-resolution features in their initial architecture for pose estimation (Sun et al., 2019a) is

et al., 2019b)
2019b)

concatenated with features gathered from facial detection and segmentation transformer (Sun et al.,

Table 3. Baseline Experimental Results

Model Backbone Batch  Epoch  Accuracy IOU FI
UNet (Ronneberger et al., 2015)  Vggl9 (Simonyan & Zisserman, 2015) 32 50 0.52 0.32  0.39
UNet (Ronneberger et al., 2015)  InceptionV3 (Szegedy et al., 2017) 32 50 0.64 0.37 044
UNet (Ronneberger et al., 2015)  ResNet50 (He et al., 2015) 32 50 0.55 033 042
FPN (Lin et al., 2017) Vggl19 (Simonyan & Zisserman, 2015) 32 50 0.68 0.72  0.78
FPN (Lin et al., 2017) InceptionV3 (Szegedy et al., 2017) 32 50 0.71 0.81 0.84
FPN (Lin et al., 2017) ResNet50 (He et al., 2015) 32 50 0.67 0.76 0.82
HR-Net (Sun et al., 2019b) Vggl19 (Simonyan & Zisserman, 2015) 32 50 0.61 0.76  0.82
HR-Net (Sun et al., 2019b) InceptionV3 (Szegedy et al., 2017) 32 50 0.68 0.83 0.87
HR-Net (Sun et al., 2019b) ResNet50 (He et al., 2015) 32 50 0.65 0.81 0.85

to both false positives and false negatives. Consider a bi-
nary classification problem in an image, whose contents are
highly imbalanced containing 90% of one class and just
10% of second class. The prediction accuracy will be high
for the class that is imbalanced whereas the actual accuracy
for all classes can be low.

10U (Intersection-Over-Union), also referred to as Jaccard
Index, is the most commonly used evaluation metrics in
domains like Object detection and semantic segmentation.
It evaluates the performance of the model by calculating the
area of overlap between ground truth results and prediction
and area of union. IOU can be used to evaluate multi-
classification problems by calculating the IOU of each class
and then taking an average.

FI Score is a similar metric to IOU and is generally called by
its second name dice coefficient. The metric can
be calculated using formula (2 * area overlapped)
/ (Sum of pixels in the ground truth
and predicted). Evaluations performed by both IOU
and F1 score are correlated. Hence, if one metric gives an
indication that the accuracy is low, the other metric will
give the same indication. Dice coefficient measurements
tend to be closer to average whereas IOU measurements
tend towards worst-case performance values.

5. Results and Discussions

We have used transfer learning approach to create a bench-
mark on proposed dataset. The models used for segmen-
tation training are UNet (Ronneberger et al., 2015), FPN
(Lin et al., 2017) and HR-Net (Sun et al., 2019b). A de-

scription of models is given in Table 2. To extract feature
maps from images and their corresponding masks, multiple
classification models’ weight sets are used as a backbone,
namely, Inception (Szegedy et al., 2017), Vgg19 (Simonyan
& Zisserman, 2015), Resnet50 (He et al., 2015) weights set
(trained on Imagenet dataset (Deng et al., 2009)).

For training purposes, the training batch size is set to 32
as empirical evidence suggests a batch size of 32 provides
the best results (Mishkin et al., 2017). Because of limited
computing power, the epoch is set to 50 to get the most
results. For the loss function, the Cross-entropy loss is
opted for accuracy metric whereas, for IOU and F1 metrics,
Jaccard loss and Dice loss are used respectively.

The training results acquired from all models are described
in Table 3. Inception architecture as a backbone gives better
results as compared with all other backbones for all met-
rics because of its deep layered architecture. The overall
accuracy has behaved differently than other metrics, this is
because shrub and vegetation percentage in a single image
exceeds any other class percentage in the same image. How-
ever, other metrics are used to address this issue which can
be evident from the results of HR-Net out-performing other
models for both F1 score and IOU metrics.

6. Conclusion and Further Work

This paper introduces a new dataset for forest terrain identi-
fication using semantic segmentation, near beaver habitat,
from UAV captured images. Nine different classes were
identified and annotated using 3rd party tools. Furthermore,
the dataset was used to train several state-of-the-art deep
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neural networks and a benchmark was provided and anal-
ysed for future case studies. For future work, we expect
to add more classes and to expand the size of the existing
dataset for training larger deep models. Furthermore, we
plan to enhance existing deep models to provide a state-of-
the-art novel framework that will outperform the existing
deep models on our dataset.
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