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Abstract
To reduce the greenhouse gas emissions from elec-
tricity production, it is necessary to switch to an
energy system based on renewable energy sources
(RES). However, intermittent electricity genera-
tion from RES poses challenges for energy sys-
tems. The primary input for data-driven solutions
is data on electricity generation from RES, which
usually contain many missing values. This pro-
posal studies the use of attention-based algorithms
to impute missing values of electricity production,
electricity demand and electricity prices. Since at-
tention mechanisms allow us to take into account
dependencies between time series across multiple
dimensions efficiently, our approach goes beyond
classic statistical methods and incorporates many
related variables, such as electricity price, demand
and production by other sources. Our preliminary
results show that while transformers can come at
higher computational costs, they are more precise
than classical imputation methods.

1. Introduction
According to the latest breakdown of global emissions pub-
lished by Climate Watch and the World Resources Institute,
the electricity sector accounts for 24% of global emissions,
while the energy sector accounts for 73% (Our World in
Data, 2021; Climate Watch, 2021; World Resources Insti-
tute, 2020). Undoubtedly, electricity production by renew-
able energy sources (RES) plays a key role to mitigate cli-
mate crisis. Furthermore, RES can help to reduce emissions
in other sectors through sector coupling, such as using elec-
tric cars in transportation or electric boilers and heat pumps
in heat sector. Data on electricity generation from RES is
a key element addressing climate change. RES generation
data are used in many contexts, ranging from studies of tech-
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nical and economic feasibility of the expansion of the RES
to short-term prediction of energy production and optimal
control or efficient use of this electricity in various sectors.
Therefore, improving the quality of these data ensure greater
accuracy and consistency of research in this area, and will
open new avenues for future innovations.

Several electricity time series have been made available
to the public. Two important examples are the PJM data
(PJM data miner, 2021) in the US and the transparency
platform ENTSO-E (ENTSO-E, 2021) in Europe. However,
compiling these data for a very large number of electricity
production units, including small generation such as rooftop
solar plants, is difficult and produces time series with many
missing values. For instance, in the ENTSO-E transparency
platform an average of 1000 values per week are missing
in the production mix data for 2015 and 2016 (Hirth et al.,
2018).

(Ruggles et al., 2020) show that after filling the gaps only
in electricity demand time series, the results of a power
system model vary by 5% between using two sophisticated
data imputation approaches, even for a very simple analysis
considering only one region. They also show that the results
from simple data imputation methods are very high and
unacceptable. In this work, we fill the data gaps in the
data of the ENTSO-E transparency platform, which consists
of 32 regions (European countries), and we fill the gaps
not only in electricity demand but also in time series of
electricity generation such as wind and solar and electricity
prices.

Time series literature have used different methods for data
imputation in the past, mostly based on statistical correla-
tion and regression techniques (Van Buuren, 2018). More
recently, the advances in Machine and Deep Learning sug-
gest that sequence prediction and forecasting methods can
be successfully applied to imputation of missing values in
energy data (Wang et al., 2019). In particular, Recurrent
Neural Networks (RNNs) and Long-Short Term Memory
(LSTMs) networks have been applied both to forecast elec-
tricity production from renewable energy sources and elec-
tricity demand, and to fill in missing values (Liu et al., 2019),
(Kumar et al., 2018).

In the last years, transformers (Vaswani et al., 2017) have
become the choice architecture to process sequences in nat-
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ural language processing applications. Transformers use an
attention mechanism to identify the relevant fragments in
a sequence. In this way, transformers learn dependencies
between all considered time stamps explicitly.

In the case of an electricity system, there are high dependen-
cies between the electricity generation, electricity demand
and electricity price time series. As an example, the follow-
ing interdependencies can be mentioned. In a power system,
the dispatch of the different power generation technologies
depends on the dispatch of the competing technologies. The
sum of electricity generation must always match electricity
demand, taking into account storage technologies. In addi-
tion, electricity prices in each hour depend on the dispatch
of the electricity generation technologies in that hour. There-
fore, there are sophisticated interdependencies between time
series that can be understood through an innovative attention
mechanism transformers. The attention mechanism makes
it possible to learn direct dependencies between individual
features at certain timestamps while RNN-based approaches
use a compressed mapping of the time series as the basis
for the imputation. By using direct dependencies instead of
a compressed representation of the timeseries transformers
can be trained faster and achieve better metrics (Sucholutsky
et al., 2019).

In contrast to the literature, we use all data on electricity gen-
eration, electricity prices and electricity demand to fill the
gaps in any of these time series. Furthermore, we analyze
the problem as a whole and try to fill the gaps in the data for
all power generation technologies, electricity demand and
electricity prices. This enables us to fill gaps across all data
dimensions simultaneously. An overview of the architecture
of our time series imputation transformer model can be seen
in Figure 3.

2. Data imputation for energy time series

Figure 1. Demonstration of the input data
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Figure 2. Visualization of the first input processing layers

We use the inter-dependencies between the electricity
prices, electricity demand and production mix for data
imputation. A detailed analyses of the impact of renew-
able energy sources on the price levels and variability
can be found in (Maciejowska, 2020). The table in Fig-
ure 1 shows the structure of the input data. Let C =
{C1, . . . , Cn} be a set of n countries (e.g., “France”, “Ger-
many”) and S = {S1, . . . , Sn} a set a n time series
types (e.g., “electricity production from solar”, ”electric-
ity prices”). Y = {Y1, . . . , Yn} represents the years and
H = {H1, . . . ,H8760} the hours of the years. We are work-
ing with 21 different electricity generation technologies,
electricity demand and electricity prices as input time series
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Figure 3. Main architecture of the transformer model

Figure 2, demonstrates the processing of these time series
before it is provided as input to the transformer layers. In-
formation about each value at the specific time step as well
as information about the availability of that feature is di-
rectly fed into the concatenation layer. Categorical informa-
tion about the feature number, country, year and weekday
is first inserted into embedding layers which learn multi-
dimensional representations of the input during training. In
addition, the model is supplied with three different posi-
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tional encodings to make it easier for the model to capture
daily, weekly and seasonal rhythms. This is especially help-
ful since the time series under consideration can have strong
seasonal characteristics, e.g. Solar or Wind.

Figure 4. Exemplary visualization of the experimental setup of the
transformer model

During the training process of the imputation model, we
input samples which cover a period of one week in hourly
time resolution. Each timestep contains 22 features. As a
result, there are 3,696 data entries in each sample, creating
a self-attention map of size of 3,696 x 3,696. During the
training process we randomly mask x data entries of the
middle day of the week (x ¡= 22 x 24). These masked values
are then predicted by the model. This approach can be found
in Figure 4. It is worth noting that such a model requires
a lot of memory during training. Therefore, it is planned
to integrate an attention decomposition mechanism, that
reduces the model size (see for example Ma et al. (Ma et al.,
2019)).

3. Preliminary results
To determine the performance of our approach, we use three
typical imputation methods as a comparison. The first one
is called Last Observation Carried Forward (LOCF), which
takes the last x values as a prediction, in our case, the last
24 hours. The second method is ridge regression, which is
a specialized form of linear regression. Finally, the third
comparison method is the so called KNN-Imputer. This
is a autoregressive method, that measures the similarity
between each day of the time series to find similar days as a
prediction. The latter approach has shown to be a popular
method for data imputing (Kuhn et al., 2013).

For these preliminary results, we only worked with a subset
of the data from ENTSO-E, that only includes data for
Germany from 2018-2020. Since small gaps in the data

can be easily recovered using simple imputation methods,
e.g linear interpolation, we want to focus on larger gaps.
This is based on our finding that 86.7% of missing values
in the ENTSO-E data from 2015-2020 are made up of gaps
equal or larger than 24 hours. To get an overview of the
possibilities of the transformer model, we first study its
ability to impute gaps with the length of 24 hours. Therefore,
we create samples with a timespan of one week by always
shifting the week one day to the right. We then remove
information of the feature under consideration (electricity
production from solar) of the day in the middle of the week.

An example of how the imputed values compare to the orig-
inal can be found in Figure 5. The error in the preliminary
results using mean squared error (MSE) with Transformer
are the lowest (0.0585). After that, KNN-Imputer performs
the best (0.0629). The errors of LOCF (0.1133) and Ridge
Regression (0.1827) are significantly higher. In addition, an
important advantage of the transformer is allowing simul-
taneous imputation of values across different dimensions
which is very useful when data for multiple features are
missing. However, the transformer can incur very high
computational costs.
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Figure 5. An example of the prediction of the feature Solar

4. Summary and outlook
We successfully used an attention based transformer algo-
rithm to fill the data gaps on electricity generation from
renewable energy sources considering cross-dimensional
dependencies in different types of electricity data. Improv-
ing the quality of these data is crucial as it is used in many
fundamental analyses and energy models. Furthermore, this
leads to an opportunity to overcome the barriers for the ex-
pansion and use of renewable energy sources and therefore
has a direct impact on achieving climate goals. In our test
case, we focus on Solar power generation in Germany, but
this approach is easily expandable to Europe, or to different
market regions, e.g. PJM. Since our results are quite promis-
ing, the next step is to evaluate the model on the complete
data and to compare the results with other methods.
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